Pytorch version of BERT-whitening

Overview

BERT-whitening

This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval".

BERT-whitening is very practical in text semantic search, in which the whitening operation not only improves the performance of unsupervised semantic vector matching, but also reduces the vector dimension, which is beneficial to reduce memory usage and improve retrieval efficiency for vector search engines, e.g., FAISS.

This method was first proposed by Jianlin Su in his blog[1].

Reproduce the experimental results

Preparation

Download datasets

$ cd data/
$ ./download_datasets.sh
$ cd ../

Download models

$ cd model/
$ ./download_models.sh
$ cd ../

After the datasets and models are downloaded, the data/ and model/ directories are as follows:

├── data
│   ├── AllNLI.tsv
│   ├── download_datasets.sh
│   └── downstream
│       ├── COCO
│       ├── CR
│       ├── get_transfer_data.bash
│       ├── MPQA
│       ├── MR
│       ├── MRPC
│       ├── SICK
│       ├── SNLI
│       ├── SST
│       ├── STS
│       ├── SUBJ
│       ├── tokenizer.sed
│       └── TREC
├── model
│   ├── bert-base-nli-mean-tokens
│   ├── bert-base-uncased
│   ├── bert-large-nli-mean-tokens
│   ├── bert-large-uncased
│   └── download_models.sh

BERT without whitening

$ python3 ./eval_without_whitening.py

Results:

Model STS-12 STS-13 STS-14 STS-15 STS-16 SICK-R STS-B
BERTbase-cls 0.3062 0.2638 0.2765 0.3605 0.5180 0.4242 0.2029
BERTbase-first_last_avg 0.5785 0.6196 0.6250 0.7096 0.6979 0.6375 0.5904
BERTlarge-cls 0.3240 0.2621 0.2629 0.3554 0.4439 0.4343 0.2675
BERTlarge-first_last_avg 0.5773 0.6116 0.6117 0.6806 0.7030 0.6034 0.5959

BERT with whitening(target)

$ python3 ./eval_with_whitening\(target\).py

Results:

Model STS-12 STS-13 STS-14 STS-15 STS-16 SICK-R STS-B
BERTbase-whiten-256(target) 0.6390 0.7375 0.6909 0.7459 0.7442 0.6223 0.7143
BERTlarge-whiten-384(target) 0.6435 0.7460 0.6964 0.7468 0.7594 0.6081 0.7247
SBERTbase-nli-whiten-256(target) 0.6912 0.7931 0.7805 0.8165 0.7958 0.7500 0.8074
SBERTlarge-nli-whiten-384(target) 0.7126 0.8061 0.7852 0.8201 0.8036 0.7402 0.8199

BERT with whitening(NLI)

$ python3 ./eval_with_whitening\(nli\).py

Results:

Model STS-12 STS-13 STS-14 STS-15 STS-16 SICK-R STS-B
BERTbase-whiten(nli) 0.6169 0.6571 0.6605 0.7516 0.7320 0.6829 0.6365
BERTbase-whiten-256(nli) 0.6148 0.6672 0.6622 0.7483 0.7222 0.6757 0.6496
BERTlarge-whiten(nli) 0.6254 0.6737 0.6715 0.7503 0.7636 0.6865 0.6250
BERTlarge-whiten-348(nli) 0.6231 0.6784 0.6701 0.7548 0.7546 0.6866 0.6381
SBERTbase-nli-whiten(nli) 0.6868 0.7646 0.7626 0.8230 0.7964 0.7896 0.7653
SBERTbase-nli-whiten-256(nli) 0.6891 0.7703 0.7658 0.8229 0.7828 0.7880 0.7678
SBERTlarge-nli-whiten(nli) 0.7074 0.7756 0.7720 0.8285 0.8080 0.7910 0.7589
SBERTlarge-nli-whiten-384(nli) 0.7123 0.7893 0.7790 0.8355 0.8057 0.8037 0.7689

Semantic retrieve with FAISS

An important function of BERT-whitening is that it can not only improve the effect of semantic similarity retrieval, but also reduce memory usage and increase retrieval speed. In this experiment, we use Quora Duplicate Questions Dataset and FAISS, a vector retrieval engine, to measure the retrieval effect and efficiency of different models. The dataset contains more than 400,000 pairs of question1-question2, and it is marked whether they are similar. We extract all the semantic vectors of question2 and store them in FAISS (299,364 vectors in total), and then use the semantic vectors of question1 to retrieve them in FAISS (290,654 vectors in total). [email protected] is used to measure the effect of retrieval, Average Retrieve Time (ms) is used to measure retrieval efficiency, and Memory Usage (GB) is used to measure memory usage. FAISS is configured in CPU mode, nlist = 1024'' and nprobe = 5'', and the CPU is Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz.

Modify model_name'' in qqp_search_with_faiss.py'', and then execute:

$ python3 qqp_search_with_faiss.py

The experimental results of different models are as follows:

Model [email protected] Average Retrieve Time (ms) Memory Usage (GB)
BERTbase-XX
BERTbase-first_last_avg 0.5531 0.7488 0.8564
BERTbase-whiten(nli) 0.5571 0.9735 0.8564
BERTbase-whiten-256(nli) 0.5616 0.2698 0.2854
BERTbase-whiten(target) 0.6104 0.8436 0.8564
BERTbase-whiten-256(target) 0.5957 0.1910 0.2854
BERTlarge-XX
BERTlarge-first_last_avg 0.5667 1.2015 1.1419
BERTlarge-whiten(nli) 0.5783 1.3458 1.1419
BERTlarge-whiten-384(nli) 0.5798 0.4118 0.4282
BERTlarge-whiten(target) 0.6178 1.1418 1.1419
BERTlarge-whiten-384(target) 0.6194 0.3301 0.4282

From the experimental results, the use of whitening to reduce the vector sizes of BERTbase and BERTlarge to 256 and 384, respectively, can significantly reduce memory usage and retrieval time, while improving retrieval results. The memory usage is strictly proportional to the vector dimension, while the average retrieval time is not strictly proportional to the vector dimension. This is because FAISS has a difference in clustering question2, which will cause some fluctuations in retrieval efficiency, but in general, the lower its dimensionality, the higher the retrieval efficiency.

References

[1] 苏剑林, 你可能不需要BERT-flow:一个线性变换媲美BERT-flow, 2020.

[2] 苏剑林, Keras版本BERT-whitening, 2020.

Owner
Weijie Liu
NLP and KG
Weijie Liu
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022