Pipeline for fast building text classification TF-IDF + LogReg baselines.

Overview

tests linter codecov

python 3.6 release (latest by date) license

pre-commit code style: black

pypi version pypi downloads

Text Classification Baseline

Pipeline for fast building text classification TF-IDF + LogReg baselines.

Usage

Instead of writing custom code for specific text classification task, you just need:

  1. install pipeline:
pip install text-classification-baseline
  1. run pipeline:
  • either in terminal:
text-clf-train
  • or in python:
import text_clf

text_clf.train()

No data preparation is needed, only a csv file with two raw columns (with arbitrary names):

  • text
  • target

NOTE: the target can be presented in any format, including text - not necessarily integers from 0 to n_classes-1.

Config

The user interface consists of only one file config.yaml.

Change config.yaml to create the desired configuration and train text classification model with the following command:

  • terminal:
text-clf-train --path_to_config config.yaml
  • python:
import text_clf

text_clf.train(path_to_config="config.yaml")

Default config.yaml:

seed: 42
verbose: true
path_to_save_folder: models

# data
data:
  train_data_path: data/train.csv
  valid_data_path: data/valid.csv
  sep: ','
  text_column: text
  target_column: target_name_short

# tf-idf
tf-idf:
  lowercase: true
  ngram_range: (1, 1)
  max_df: 1.0
  min_df: 0.0

# logreg
logreg:
  penalty: l2
  C: 1.0
  class_weight: balanced
  solver: saga
  multi_class: auto
  n_jobs: -1

NOTE: tf-idf and logreg are sklearn TfidfVectorizer and LogisticRegression parameters correspondingly, so you can parameterize instances of these classes however you want.

Output

After training the model, the pipeline will return the following files:

  • model.joblib - sklearn pipeline with TF-IDF and LogReg steps
  • target_names.json - mapping from encoded target labels from 0 to n_classes-1 to it names
  • config.yaml - config that was used to train the model
  • logging.txt - logging file

Requirements

Python >= 3.6

Citation

If you use text-classification-baseline in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{dayyass2021textclf,
    author       = {El-Ayyass, Dani},
    title        = {Pipeline for training text classification baselines},
    howpublished = {\url{https://github.com/dayyass/text-classification-baseline}},
    year         = {2021}
}
You might also like...
Code for EMNLP 2021 main conference paper
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Pipeline for chemical image-to-text competition
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Text-Summarization-using-NLP - Text Summarization using NLP  to fetch BBC News Article and summarize its text and also it includes custom article Summarization A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Text vectorization tool to outperform TFIDF for classification tasks
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

Text vectorization tool to outperform TFIDF for classification tasks
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

Comments
  • release v0.1.4

    release v0.1.4

    • fixed load_20newsgroups.py (#65 #71)
    • added Makefile (#71)
    • added logging confusion matrix (#72)
    • replaced all "valid" occurrences with "test" (#74)
    • updated docstrings (#77)
    • changed python interface - train function returns model and target_names_mapping (#78)
    enhancement 
    opened by dayyass 1
  • release v0.1.6

    release v0.1.6

    fixed token frequency support (add token frequency support #85) fixed threshold selection for binary classification (add threshold selection for binary classification #86)

    bug enhancement 
    opened by dayyass 0
  • release v0.1.5

    release v0.1.5

    • added lemmatization (#66)
    • added token frequency support (#84)
    • added threshold selection for binary classification (#79)
    • added arbitrary save folder name (#80)
    enhancement 
    opened by dayyass 0
  • release v0.1.5

    release v0.1.5

    • added lemmatization (#81)
    • added token frequency support (#85)
    • added threshold selection for binary classification (#86)
    • added arbitrary save folder name (#83)
    enhancement 
    opened by dayyass 0
Releases(v0.1.6)
  • v0.1.6(Nov 6, 2021)

    Release v0.1.6

    • fixed token frequency support (add token frequency support #85)
    • fixed threshold selection for binary classification (add threshold selection for binary classification #86)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Oct 21, 2021)

    Release v0.1.5 🥳🎉🍾

    • added pymorphy2 lemmatization (#81)
    • added token frequency support (#85)
    • added threshold selection for binary classification (#86)
    • added arbitrary save folder name (#83)

    pymorphy2 lemmatization (config.yaml)

    # preprocessing
    # (included in resulting model pipeline, so preserved for inference)
    preprocessing:
      lemmatization: pymorphy2
    

    token frequency support

    • text_clf.token_frequency.get_token_frequency(path_to_config) -
      get token frequency of train dataset according to the config file parameters

    threshold selection for binary classification

    • text_clf.pr_roc_curve.get_precision_recall_curve(path_to_model_folder) -
      get precision and recall metrics for precision-recall curve
    • text_clf.pr_roc_curve.get_roc_curve(path_to_model_folder) -
      get false positive rate (fpr) and true positive rate (tpr) metrics for roc curve
    • text_clf.pr_roc_curve.plot_precision_recall_curve(precision, recall) -
      plot precision-recall curve
    • text_clf.pr_roc_curve.plot_roc_curve(fpr, tpr) -
      plot roc curve
    • text_clf.pr_roc_curve.plot_precision_recall_f1_curves_for_thresholds(precision, recall, thresholds) -
      plot precision, recall, f1-score curves for probability thresholds

    arbitrary save folder name (config.yaml)

    experiment_name: model
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Oct 10, 2021)

    • fixed load_20newsgroups.py (#65 #71)
    • added Makefile (#71)
    • added logging confusion matrix (#72)
    • replaced all "valid" occurrences with "test" (#74)
    • updated docstrings (#77)
    • changed python interface - train function returns model and target_names_mapping (#78)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Sep 2, 2021)

  • v0.1.2(Aug 19, 2021)

  • v0.1.1(Aug 11, 2021)

  • v0.1.0(Aug 7, 2021)

Owner
Dani El-Ayyass
NLP Tech Lead @ Sber AI, Master Student in Applied Mathematics and Computer Science @ CMC MSU
Dani El-Ayyass
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022