Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Related tags

Text Data & NLPpptod
Overview

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang

Code our PPTOD paper: Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Introduction:

Pre-trained language models have been recently shown to benefit task-oriented dialogue (TOD) systems. Despite their success, existing methods often formulate this task as a cascaded generation problem which can lead to error accumulation across different sub-tasks and greater data annotation overhead. In this study, we present PPTOD, a unified model that seamlessly supports both task-oriented dialogue understanding and response generation in a plug-and-play fashion. In addition, we introduce a new dialogue multi-task pre-training strategy that allows the model to learn the primary TOD task completion skills from heterogeneous dialog corpora. We extensively test our model on three benchmark TOD tasks, including end-to-end dialogue modelling, dialogue state tracking, and intent classification. Results show that PPTOD creates new state-of-the-art on all evaluated tasks in both full training and low-resource scenarios. Furthermore, comparisons against previous SOTA methods show that the responses generated by PPTOD are more factually correct and semantically coherent as judged by human annotators.

Alt text

1. Citation

If you find our paper and resources useful, please kindly cite our paper:

  @article{su2021multitask,
    author    = {Yixuan Su and
                 Lei Shu and
                 Elman Mansimov and
                 Arshit Gupta and
                 Deng Cai and
                 Yi{-}An Lai and
                 Yi Zhang},
    title     = {Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System},
    journal   = {CoRR},
    volume    = {abs/2109.14739},
    year      = {2021},
    url       = {https://arxiv.org/abs/2109.14739},
    eprinttype = {arXiv},
    eprint    = {2109.14739}
  }

2. Environment Setup:

pip3 install -r requirements.txt
python -m spacy download en_core_web_sm

3. PPTOD Checkpoints:

You can download checkpoints of PPTOD with different configurations here.

PPTOD-small PPTOD-base PPTOD-large
here here here

To use PPTOD, you should download the checkpoint you want and unzip it in the ./checkpoints directory.

Alternatively, you can run the following commands to download the PPTOD checkpoints.

(1) Downloading Pre-trained PPTOD-small Checkpoint:

cd checkpoints
chmod +x ./download_pptod_small.sh
./download_pptod_small.sh

(2) Downloading Pre-trained PPTOD-base Checkpoint:

cd checkpoints
chmod +x ./download_pptod_base.sh
./download_pptod_base.sh

(3) Downloading Pre-trained PPTOD-large Checkpoint:

cd checkpoints
chmod +x ./download_pptod_large.sh
./download_pptod_large.sh

4. Data Preparation:

The detailed instruction for preparing the pre-training corpora and the data of downstream TOD tasks are provided in the ./data folder.

5. Dialogue Multi-Task Pre-training:

To pre-train a PPTOD model from scratch, please refer to details provided in ./Pretraining directory.

6. Benchmark TOD Tasks:

(1) End-to-End Dialogue Modelling:

To perform End-to-End Dialogue Modelling using PPTOD, please refer to details provided in ./E2E_TOD directory.

(2) Dialogue State Tracking:

To perform Dialogue State Tracking using PPTOD, please refer to details provided in ./DST directory.

(3) Intent Classification:

To perform Intent Classification using PPTOD, please refer to details provided in ./IC directory.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022