STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

Overview

STonKGs

Tests PyPI PyPI - Python Version PyPI - License Documentation Status DOI Code style: black

STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combines structured information from KGs with unstructured text data to learn joint representations. While we demonstrated STonKGs on a biomedical knowledge graph ( i.e., from INDRA), the model can be applied other domains. In the following sections we describe the scripts that are necessary to be run to train the model on any given dataset.

💪 Getting Started

Data Format

Since STonKGs is operating on both text and KG data, it's expected that the respective data files include columns for both modalities. More specifically, the expected data format is a pandas dataframe (or a pickled pandas dataframe for the pre-training script), in which each row is containing one text-triple pair. The following columns are expected:

  • source: Source node in the triple of a given text-triple pair
  • target: Target node in the triple of a given text-triple pair
  • evidence: Text of a given text-triple pair
  • (optional) class: Class label for a given text-triple pair in fine-tuning tasks (does not apply to the pre-training procedure)

Note that both source and target nodes are required to be in the Biological Expression Langauge (BEL) format, more specifically, they need to be contained in the INDRA KG. For more details on the BEL format, see for example the INDRA documentation for BEL processor and PyBEL.

Pre-training STonKGs

Once you have installed STonKGs as a Python package (see below), you can start training the STonKGs on your dataset by running:

$ python3 -m stonkgs.models.stonkgs_pretraining

The configuration of the model can be easily modified by altering the parameters of the pretrain_stonkgs method. The only required argument to be changed is PRETRAINING_PREPROCESSED_POSITIVE_DF_PATH, which should point to your dataset.

Downloading the pre-trained STonKGs model on the INDRA KG

We released the pre-trained STonKGs models on the INDRA KG for possible future adaptations, such as further pre-training on other KGs. Both STonKGs150k as well as STonKGs300k are accessible through Hugging Face's model hub.

The easiest way to download and initialize the pre-trained STonKGs model is to use the from_default_pretrained() class method (with STonKGs150k being the default):

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_default_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_default_pretrained()

Alternatively, since our code is based on Hugging Face's transformers package, the pre-trained model can be easily downloaded and initialized using the .from_pretrained() function:

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_pretrained(
    'stonkgs/stonkgs-150k',
)

Extracting Embeddings

The learned embeddings of the pre-trained STonKGs models (or your own STonKGs variants) can be extracted in two simple steps. First, a given dataset with text-triple pairs (a pandas DataFrame, see Data Format) needs to be preprocessed using the preprocess_file_for_embeddings function. Then, one can obtain the learned embeddings using the preprocessed data and the get_stonkgs_embeddings function:

import pandas as pd

from stonkgs import get_stonkgs_embeddings, preprocess_df_for_embeddings

# Generate some example data
# Note that the evidence sentences are typically longer than in this example data
rows = [
    [
        "p(HGNC:1748 ! CDH1)",
        "p(HGNC:2515 ! CTNND1)",
        "Some example sentence about CDH1 and CTNND1.",
    ],
    [
        "p(HGNC:6871 ! MAPK1)",
        "p(HGNC:6018 ! IL6)",
        "Another example about some interaction between MAPK and IL6.",
    ],
    [
        "p(HGNC:3229 ! EGF)",
        "p(HGNC:4066 ! GAB1)",
        "One last example in which Gab1 and EGF are mentioned.",
    ],
]
example_df = pd.DataFrame(rows, columns=["source", "target", "evidence"])

# 1. Preprocess the text-triple data for embedding extraction
preprocessed_df_for_embeddings = preprocess_df_for_embeddings(example_df)

# 2. Extract the embeddings 
embedding_df = get_stonkgs_embeddings(preprocessed_df_for_embeddings)

Fine-tuning STonKGs

The most straightforward way of fine-tuning STonKGs on the original six classfication tasks is to run the fine-tuning script (note that this script assumes that you have a mlflow logger specified, e.g. using the --logging_dir argument):

$ python3 -m stonkgs.models.stonkgs_finetuning

Moreover, using STonKGs for your own fine-tuning tasks (i.e., sequence classification tasks) in your own code is just as easy as initializing the pre-trained model:

from stonkgs import STonKGsForSequenceClassification

# Download the model from the model hub and initialize it for fine-tuning
stonkgs_model_finetuning = STonKGsForSequenceClassification.from_default_pretrained(
    num_labels=number_of_labels_in_your_task,
)

# Initialize a Trainer based on the training dataset
trainer = Trainer(
    model=model,
    args=some_previously_defined_training_args,
    train_dataset=some_previously_defined_finetuning_data,
)

# Fine-tune the model to the moon 
trainer.train()

Using STonKGs for Inference

You can generate new predictions for previously unseen text-triple pairs (as long as the nodes are contained in the INDRA KG) based on either 1) the fine-tuned models used for the benchmark or 2) your own fine-tuned models. In order to do that, you first need to load/initialize the fine-tuned model:

from stonkgs.api import get_species_model, infer

model = get_species_model()

# Next, you want to use that model on your dataframe (consisting of at least source, target
# and evidence columns, see **Data Format**) to generate the class probabilities for each
# text-triple pair belonging to each of the specified classes in the respective fine-tuning task:
example_data = ...

# See Extracting Embeddings for the initialization of the example data
# This returns both the raw (transformers) PredictionOutput as well as the class probabilities 
# for each text-triple pair
raw_results, probabilities = infer(model, example_data)

ProtSTonKGs

It is possible to download the extension of STonKGs, the pre-trained ProtSTonKGs model, and initialize it for further pre-training on text, KG and amino acid sequence data:

from stonkgs import ProtSTonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_pretrained
protstonkgs_pretraining = ProtSTonKGsForPreTraining.from_pretrained(
    'stonkgs/protstonkgs',
)

Moreover, analogous to STonKGs, ProtSTonKGs can be used for fine-tuning sequence classification tasks as well:

from stonkgs import ProtSTonKGsForSequenceClassification

# Download the model from the model hub and initialize it for fine-tuning
protstonkgs_model_finetuning = ProtSTonKGsForSequenceClassification.from_default_pretrained(
    num_labels=number_of_labels_in_your_task,
)

# Initialize a Trainer based on the training dataset
trainer = Trainer(
    model=model,
    args=some_previously_defined_training_args,
    train_dataset=some_previously_defined_finetuning_data,
)

# Fine-tune the model to the moon 
trainer.train()

⬇️ Installation

The most recent release can be installed from PyPI with:

$ pip install stonkgs

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/stonkgs/stonkgs.git

To install in development mode, use the following:

$ git clone git+https://github.com/stonkgs/stonkgs.git
$ cd stonkgs
$ pip install -e .

Warning: Because stellargraph doesn't currently work on Python 3.9, this software can only be installed on Python 3.8.

Artifacts

The pre-trained models are hosted on HuggingFace The fine-tuned models are hosted on the STonKGs community page on Zenodo along with the other artifacts (node2vec embeddings, random walks, etc.)

Acknowledgements

⚖️ License

The code in this package is licensed under the MIT License.

📖 Citation

Balabin H., Hoyt C.T., Birkenbihl C., Gyori B.M., Bachman J.A., Komdaullil A.T., Plöger P.G., Hofmann-Apitius M., Domingo-Fernández D. STonKGs: A Sophisticated Transformer Trained on Biomedical Text and Knowledge Graphs (2021), bioRxiv, 2021.08.17.456616v1.

🎁 Support

This project has been supported by several organizations (in alphabetical order):

💰 Funding

This project has been funded by the following grants:

Funding Body Program Grant
DARPA Automating Scientific Knowledge Extraction (ASKE) HR00111990009

🍪 Cookiecutter

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

🛠️ Development

The final section of the README is for if you want to get involved by making a code contribution.

Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

📦 Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses BumpVersion to switch the version number in the setup.cfg and src/stonkgs/version.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.
Comments
  • Add default loading function

    Add default loading function

    This PR uses the top-level __init__.py to make imports a bit less verbose and adds a class method that wraps loading from huggingface's hub so users don't need so many constants

    opened by cthoyt 3
  • Add code for using fine-tuned models

    Add code for using fine-tuned models

    • [x] Upload fine-tuned models to Zenodo under CC 0 license each in their own record (@cthoyt)
      • [x] species (https://zenodo.org/record/5205530)
      • [x] location (https://zenodo.org/record/5205553)
      • [x] disease (https://zenodo.org/record/5205592)
      • [x] correct (multiclass; https://zenodo.org/record/5206139)
      • [x] correct (binary; https://zenodo.org/record/5205989)
      • [x] cell line (https://zenodo.org/record/5205915)
    • [x] Automate download of fine-tuned models with PyStow (@cthoyt; see example in 660920d, done in 5dfecde)
    • [x] Show how to load model into python object (@helena-balabin)
    • [x] Show how to make a prediction on a given text triple, similarly to the README example that's on the general pre-trained model (@helena-balabin)
    opened by cthoyt 2
  • Prepare code for black

    Prepare code for black

    black is an automatic code formatter and linter. After all of the flake8 hell, it's a solution we can use to automate most of the pain away. This PR prepares the project for applying black by updating the flake8 config (adding a specific ignore) and adding a tox environment for applying black itself.

    After accepting this PR, do two things in order:

    1. Uncomment the flake8-black plugin in the flake8 environment of the tox.ini
    2. Run tox -e lint
    opened by cthoyt 1
  • Stream, yo

    Stream, yo

    I got a sigkill from lack of memory when I did this on the full COVID19 emmaa model, so I'm switching everything over to iterables and streams rather than building up full pandas dataframes each time.

    opened by cthoyt 0
  • Improve label to identifier mapping

    Improve label to identifier mapping

    Make sure that during inference, the predictions are correctly mapped to any kind of class labels when saving the dataframe. (This requires accessing/saving the id2tag attribute in each of the fine-tuning model classes.)

    opened by helena-balabin 0
Releases(v0.1.5)
Owner
STonKGs
Multimodal Transformers for biomedical text and Knowledge Graph data
STonKGs
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022