Tools and data for measuring the popularity & growth of various programming languages.

Overview

growth-data

Tools and data for measuring the popularity & growth of various programming languages.

Install the dependencies

$ pip install -r requirements.txt

Example queries

Number of (non-fork) repositories

sqlite> .mode column
sqlite> SELECT
    ds,
    github_search_q AS q,
    MAX(github_search_total_count) AS num_repos
  FROM github_search
  GROUP BY 1, 2
  ORDER BY 3;
ds          q                                  num_repos
----------  ---------------------------------  ---------
2021-12-22  language:tla and fork:false        64       
2021-12-22  language:lean and fork:false       75       
2021-12-22  language:idris and fork:false      140      
2021-12-22  language:agda and fork:false       192      
2021-12-22  language:ada and fork:false        438      
2021-12-22  language:coq and fork:false        509      
2021-12-22  language:erlang and fork:false     2260     
2021-12-22  language:ocaml and fork:false      2278     
2021-12-22  language:fortran and fork:false    3196     
2021-12-22  language:verilog and fork:false    3882     
2021-12-22  language:assembly and fork:false   8654     
2021-12-22  language:haskell and fork:false    10052    
2021-12-22  language:terraform and fork:false  10254    
2021-12-22  language:rust and fork:false       21906    
2021-12-22  language:go and fork:false         67601    
2021-12-22  language:r and fork:false          114942   
2021-12-22  language:c and fork:false          174439   
2021-12-22  language:c++ and fork:false        270351   
2021-12-22  language:python and fork:false     762729   
2021-12-22  language:java and fork:false       943381   
sqlite> 

Stats about the average (non-fork) repository

sqlite> .mode column
sqlite> SELECT
    github_search.ds AS ds,
    github_search_q AS q,
    COUNT(*) AS repos,
    SUM(github_repo_has_issues) AS repos_with_issues,
    SUM(github_repo_has_wiki) AS repos_with_wiki,
    SUM(github_repo_has_pages) AS repos_with_pages,
    SUM(github_repo_license_name != '') AS repos_with_license,
    SUM(github_repo_size) AS sum_repo_size,
    SUM(github_repo_stargazers_count) AS sum_stars,
    AVG(github_repo_stargazers_count) AS avg_stars,
    AVG(github_repo_forks_count) AS avg_forks,
    AVG(github_repo_size) AS avg_size,
    AVG(github_repo_open_issues_count) AS avg_open_issues
  FROM github_search INNER JOIN github_search_repo
  ON github_search.obj_id = github_search_obj_id
  GROUP BY 1, 2
  ORDER BY 3;
ds          q                              repos  repos_with_issues  repos_with_wiki  repos_with_pages  repos_with_license  sum_repo_size  sum_stars  avg_stars         avg_forks         avg_size          avg_open_issues  
----------  -----------------------------  -----  -----------------  ---------------  ----------------  ------------------  -------------  ---------  ----------------  ----------------  ----------------  -----------------
2021-12-22  language:tla and fork:false    64     63                 61               1                 23                  1393879        1937       30.265625         2.34375           21779.359375      0.359375         
2021-12-22  language:lean and fork:false   75     73                 72               5                 22                  1119783        1475       19.6666666666667  1.85333333333333  14930.44          1.61333333333333 
2021-12-22  language:idris and fork:false  140    139                136              4                 63                  108818         1242       8.87142857142857  0.85              777.271428571429  0.728571428571429
2021-12-22  language:agda and fork:false   192    188                187              9                 51                  394233         1725       8.984375          0.90625           2053.296875       0.291666666666667
2021-12-22  language:ada and fork:false    438    421                406              12                155                 2387761        2210       5.04566210045662  1.13926940639269  5451.50913242009  1.09360730593607 
2021-12-22  language:coq and fork:false    509    502                493              42                204                 2894476        4304       8.45579567779961  1.50098231827112  5686.59332023576  0.846758349705305
sqlite>

Stats about the average recently-updated (non-fork) repository

sqlite> .mode column
sqlite> SELECT
    github_search.ds AS ds,
    github_search_q AS q,
    COUNT(*) AS repos,
    SUM(github_repo_has_issues) AS repos_with_issues,
    SUM(github_repo_has_wiki) AS repos_with_wiki,
    SUM(github_repo_has_pages) AS repos_with_pages,
    SUM(github_repo_license_name != '') AS repos_with_license,
    SUM(github_repo_size) AS sum_repo_size,
    SUM(github_repo_stargazers_count) AS sum_stars,
    AVG(github_repo_stargazers_count) AS avg_stars,
    AVG(github_repo_forks_count) AS avg_forks,
    AVG(github_repo_size) AS avg_size,
    AVG(github_repo_open_issues_count) AS avg_open_issues
  FROM github_search INNER JOIN github_search_repo
  ON github_search.obj_id = github_search_obj_id
  WHERE github_repo_updated_at >= '2021-01-01T00:00:00Z'
  GROUP BY 1, 2
  ORDER BY 3;
ds          q                              repos  repos_with_issues  repos_with_wiki  repos_with_pages  repos_with_license  sum_repo_size  sum_stars  avg_stars         avg_forks         avg_size          avg_open_issues  
----------  -----------------------------  -----  -----------------  ---------------  ----------------  ------------------  -------------  ---------  ----------------  ----------------  ----------------  -----------------
2021-12-22  language:tla and fork:false    33     32                 30               1                 18                  1322462        1921       58.2121212121212  4.39393939393939  40074.6060606061  0.636363636363636
2021-12-22  language:idris and fork:false  44     44                 43               3                 23                  33576          1052       23.9090909090909  2.22727272727273  763.090909090909  1.61363636363636 
2021-12-22  language:lean and fork:false   46     44                 43               3                 14                  1116533        1442       31.3478260869565  2.93478260869565  24272.4565217391  2.58695652173913 
2021-12-22  language:agda and fork:false   77     74                 75               8                 24                  310115         1520       19.7402597402597  1.93506493506494  4027.46753246753  0.376623376623377
2021-12-22  language:ada and fork:false    168    165                148              10                82                  1615474        2065       12.2916666666667  2.67261904761905  9615.91666666667  2.80357142857143 
2021-12-22  language:coq and fork:false    211    206                201              32                113                 1962100        4018       19.042654028436   3.22748815165877  9299.05213270142  1.89099526066351 
sqlite> 
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023