Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Overview

Housegan-data-reader

House-GAN++ (data-reader)

Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects, CVPR 2021. Project website.

Input Data

alt text
Data: RPLAN dataset, which offers 60k vector-graphics floorplans designed by professional architects.

How to run

python rasetr_to_json.py --path #rplan_dataset/#image_number.png

Output data format

The data file (e.g., /sample_output/0.json).

ROOM_CLASS = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "balcony": 5, "entrance": 6, "dining room": 7, "study room": 8,
              "storage": 10 , "front door": 15, "unknown": 16, "interior_door": 17}
              
              
# having room type in it
"room_type": [3, 4, 1, 3 ]

#bounding boxes per room        
"boxes: [[72.0, 161.0, 124.0, 220.0], [72.0, 130.0, 107.0, 157.0], [111.0, 28.0, 184.0, 203.0], [72.0, 87.0, 124.0, 126.0]] 

#first four entry are per list are rooms edges and 4th and 6th are showing what room type is on each side of edge 
"edges":[72.0, 161.0, 72.0, 220.0, 3, 0], ...,[107.0, 130.0, 72.0, 130.0, 4, 0], [148.0, 28.0, 148.0, 87.0, 1, 2]] 

#room indexes that are on each side of the edges
"ed_rm":[0], [0], [0], [0, 2], ..., [2], [2, 3], [2, 1], [2, 0], [2]] 

Citation

Please consider citing our work.

@inproceedings{nauata2021house,
  title={House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects},
  author={Nauata, Nelson and Hosseini, Sepidehsadat and Chang, Kai-Hung and Chu, Hang and Cheng, Chin-Yi and Furukawa, Yasutaka},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13632--13641},
  year={2021}
}

Contact

If you have any question, feel free to contact me at [email protected]

Acknowledgement

This research is partially supported by NSERC Discovery Grants, NSERC Discovery Grants Accelerator Supplements, DND/NSERC Discovery Grant Supplement, and Autodesk. We would like to thank architects and students for participating in our user study.

Owner
Sepid Hosseini
Research Assistant in "Gruvi Lab"
Sepid Hosseini
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022