Dope Wars game engine on StarkNet L2 roll-up

Related tags

Text Data & NLPRYO
Overview

RYO

Dope Wars game engine on StarkNet L2 roll-up.

What

TI-83 drug wars built as smart contract system.

Background mechanism design notion here.

Initial exploration / walkthrough viability testing blog here.

Join in and learn about:

- Cairo. A turing-complete language for programs that become proofs.
- StarkNet. An Ethereum L2 rollup with:
    - L1 for data availability
    - State transitions executed by validity proofs that the EVM checks.

Setup

Clone this repo and use our docker shell to interact with starknet:

git clone [email protected]:dopedao/RYO.git
cd RYO
bin/shell starknet --version

The CLI allows you to deploy to StarkNet and read/write to contracts already deployed. The CLI communicates with a server that StarkNet runs, which bundles the requests, executes the program (contracts are Cairo programs), creates and aggregates validity proofs, then posts them to the Goerli Ethereum testnet. Learn more in the Cairo language and StarkNet docs here, which also has instructions for manual installation if you are not using docker.

If using VS-code for writing code, install the extension for syntax highlighting:

curl -LO https://github.com/starkware-libs/cairo-lang/releases/download/v0.4.0/cairo-0.4.0.vsix
code --install-extension cairo-0.4.0.vsix
code .

Dev

Flow:

  1. Compile the contract with the CLI
  2. Test using pytest
  3. Deploy with CLI
  4. Interact using the CLI or the explorer

File name prefixes are paired (e.g., contract, ABI and test all share comon prefix).

Compile

The compiler will check the integrity of the code locally. It will also produce an ABI, which is a mapping of the contract functions (used to interact with the contract).

bin/shell starknet-compile contracts/GameEngineV1.cairo \
    --output contracts/GameEngineV1_compiled.json \
    --abi abi/GameEngineV1_contract_abi.json

bin/shell starknet-compile contracts/MarketMaker.cairo \
    --output contracts/MarketMaker_compiled.json \
    --abi abi/MarketMaker_contract_abi.json

Test

bin/shell pytest testing/GameEngineV1_contract_test.py

bin/shell pytest testing/MarketMaker_contract_test.py

Deploy

bin/shell starknet deploy --contract contracts/GameEngineV1_compiled.json \
    --network=alpha

bin/shell starknet deploy --contract contracts/MarketMaker_compiled.json \
    --network=alpha

Upon deployment, the CLI will return an address, which can be used to interact with.

Check deployment status by passing in the transaction ID you receive:

bin/shell starknet tx_status --network=alpha --id=176230

PENDING Means that the transaction passed the validation and is waiting to be sent on-chain.

{
    "block_id": 18880,
    "tx_status": "PENDING"
}

Interact

CLI - Write (initialise markets). Set up item_id=5 across all 40 locations. Each pair has 10x more money than item quantity. All items have the same curve

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_pairs_for_item \
    --inputs 5 \
        40 \
        20 40 60 80 100 120 140 160 180 200 \
        220 240 260 280 300 320 340 360 380 400 \
        420 440 460 480 500 520 540 560 580 600 \
        620 640 660 680 700 720 740 760 780 800 \
        40 \
        200 400 600 800 1000 1200 1400 1600 1800 2000 \
        2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 \
        4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 \
        6200 6400 6600 6800 7000 7200 7400 7600 7800 8000

Change 5 to another item_id in the range 1-10 to populate other curves.

CLI - Write (initialize user). Set up user_id=733 to have 2000 of item 5.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_user_amount \
    --inputs 733 5 2000

CLI - Read (user state)

bin/shell starknet call \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function check_user_state \
    --inputs 733

CLI - Write (Have a turn). User 733 goes to location 34 to sell (sell is 1, buy is 0) item 5, giving 100 units.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function have_turn \
    --inputs 733 34 1 5 100

Calling the check_user_state() function again reveals that the 100 units were exchanged for some quantity of money.

Alternatively, see and do all of the above with the Voyager browser here.

Game flow

admin ->
        initialise state variables
        lock admin power
user_1 ->
        have_turn(got_to_loc, trade_x_for_y)
            check if game finished.
            check user authentification.
            check if user allowed using game clock.
            add to random seed.
            user location update.
                decrease money count if new city.
            check for dealer dash (x %).
                check for chase dealer (x %).
                    item lost, no money gained.
            trade with market curve for location.
                decrease money/item, increase the other.
            check for any of:
                mugging (x %).
                    check for run (x %).
                        lose a percentage of money.
                gang war (x %).
                    check for fight (x %).
                        lose a percentage of money.
                cop raid (x %).
                    check for bribe (x %).
                        lose percentage of money & items held.
                find item (x %).
                    increase item balance.
                local shipment (x %).
                    increase item counts in suburb curves.
                warehouse seizure (x %).
                    decrease item counts in suburb curves.
            save next allowed turn as game_clock + n.
user2 -> (same as user_1)

Next steps

Building out parts to make a functional v1. Some good entry-level options for anyone wanting to try out Cairo.

  • Initialised multiple player states.
  • Turn rate limiting. Game has global clock that increments every time a turn occurs. User has a lockout of x clock ticks.
  • Game end criterion based on global clock.
  • Finish mappings/locations.json. Name places and implement different cost to travel for some locations.
    • Locations will e.g., be 10 cities [0, 9] each with 4 suburbs [0, 4].
    • E.g., locations 0, 11, 21, 31 are city 1. Locations 2, 12, 22, 32 are city 2. So location_id=27 is city 7, suburb 2. Free to travel to other suburbs in same city (7, 17, 37).
    • Need to create a file with nice city/subrub names for these in
  • Finish mappings/items.json. Populate and tweak the item names and item unit price. E.g., cocaine price per unit different from weed price per unit.
  • Finish mappings/initial_markets.csv. Create lists of market pair values to initialize the game with. E.g., for all 40 locations x 10 items = 400 money_count-item_count pairs as a separate file. A mapping of 600 units with 6000 money initialises a dealer in that location with 60 of the item at (6000/60) 100 money per item. This mapping should be in the ballpark of the value in items.json. The fact that values deviate, creates trade opportunities at the start of the game. (e.g., a location might have large quantity at lower price).
  • Refine both the likelihood (basis points per user turn) and impact (percentage change) that events have and treak the constanst at the top of contracts/GameEngineV1.cairo. E.g., how often should you get mugged, how much money would you lose.
  • Initialize users with money upon first turn. (e.g., On first turn triggers save of starting amount e.g., 10,000, then sets the flag to )
  • Create caps on maximum parameters (40 location_ids, 10k user_ids, 10 item_ids)
  • User authentication. E.g., signature verification.
  • Add health clock. E.g., some events lower health

Welcome:

  • PRs
  • Issues
  • Questions about Cairo
  • Ideas for the game
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022