Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Overview

Applied Natural Language Processing in the Enterprise

This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reilly Media publication by Ankur A. Patel and Ajay Uppili Arasanipalai. Here, you will find all the source code from the book, published here on GitHub for your convenience.

Follow the steps below to get started with setting up your environment and running the code examples.

Setup

To install all the required libraries and dependencies, run the following command:

pip install nlpbook

However, the recommended approach is to use conda, a cross-platform, language-agnostic package manager that automatically handles dependency conflicts.

If you have not already, install the Miniforge distribution of Python 3.8 based on your OS. If you are on Windows, you can choose the Anaconda distribution of Python 3.8 instead of the Miniforge distribution, if you wish to.

Once conda is installed, run the following command:

conda install -c nlpbook nlpbook

Alternatively, if you'd like to keep your environment for this book isolated from the rest of your system (which we highly recommend), run the following commands:

conda create -n nlpbook
conda activate nlpbook
conda install -c nlpbook nlpbook

Then run conda activate nlpbook every time you want to return to your environment. To exit the environment, run conda deactivate.

Next, install the spaCy models.

python -m spacy download en_core_web_sm
python -m spacy download en_core_web_lg
python -m spacy download en_core_web_trf

Setup Environment Directly

If you're interested in setting up an environment to quickly get up and running with the code for this book, run the following commands from the root of this repo (please see the "Getting the Code" section below on how to set up the repo first).

conda env create --file environment.yml
conda activate nlpbook

You can also grab all the dependacies via pip:

pip install -r requirements.txt

Getting the Code

All publicly released code is in this repository. The simplest way to get started is via Git:

git clone https://github.com/nlpbook/nlpbook.git

If you're on Windows or another platform that doesn't already have git installed, you may need to obtain a Git client.

If you want a specific version to match the copy of the book you have (this can occasionally change), you can find previous versions on the releases page.

Getting the Data

Next, download data from AWS S3 (the data files are too large to store and access on Github).

aws s3 cp s3://applied-nlp-book/data/ data --recursive --no-sign-request
aws s3 cp s3://applied-nlp-book/models/ag_dataset/ models/ag_dataset --recursive --no-sign-request

How This Repo is Organized

Each chapter in the book has a corresponding notebook in the root of this project repository. They are named chXX.ipynb for the chapter XX. The appendices are named apXX.ipynb.

Note: This repo only contains the code for the chapters, not the actual text in the book. For the complete text, please purchase a copy of the book. Chapters 1, 2, and 3 have been open-sourced, courtesy of O'Reilly and the authors.

Once you'd navigated to the nlpbook project directory, you can lauch a Jupyter client such as Jupyter Lab, Jupyter Notebooks, or VS Code to view and run the notebooks.

Contributions and Errata

We welcome any suggestions, feedback, and errata from readers. If you notice anything that seems off in the book or could use improvement, we've love to hear from you. Feel free to submit an issue here on GitHub or on our errata page.

Copyright Notice

This material is made available by the Creative Commons Attribution-Noncommercial-No Derivatives 4.0 International Public License.

Note: You are free to use the code in accordance with the MIT license, but you are not allowed to redistribute or sell any of the text presented in chapters 1, 2, and 3, which have been open-sourced for the benefit of the community. Please consider purchasing a copy of the book if you are interested in reading the text that accompanies the code presented in this repo.

You might also like...
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow.  This is part of the CASL project: http://casl-project.ai/
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

DELTA is a deep learning based natural language and speech processing platform.
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Comments
  • Download failed for train_prepared.csv

    Download failed for train_prepared.csv

    download failed: s3://applied-nlp-book/data/ag_dataset/prepared/train_prepared.csv to data/train_prepared.csv An error occurred (AccessDenied) when calling the GetObject operation: Access Denied

    opened by sharma-ji 2
  • Chapter 05: data contains no attribute

    Chapter 05: data contains no attribute "Field"

    In chapter 05 when setting up the fields for training an Embedding on IMDB data you propose:

    TEXT = data.Field(lower=True, include_lengths=True, \
    batch_first=False, tokenize='spacy')
    LABEL = data.LabelField()
    

    However, data has not been defined yet. The module data imported from torchtext.__all__ does not contain an attribute Field. In the sources of torchtext I couldn't find it either.

    Can you advise or define data ?

    My Python version: 1.9.0 My Torchtext version: 0.10.0

    opened by iNLyze 1
  • No 'data' folder in Ch. 1

    No 'data' folder in Ch. 1

    Hello,

    I purchased your book and started reading Ch.1. Great book so far. I tried to emulate what is written in your book and ipynb. But there is no folder "data" that can retrieve Jeopardy questions. I guess this kind of incompleteness will not be the last even though I am reading your first chapter. Could you run your notebooks in a new environment and check what is missing? Thank you in advance. It would be an option to make your notebooks run in Colab. Then, you can write a setup file at the beginning of each chapter and users won't have issues running the scripts.

    opened by knslee07 1
Releases(v1.0.0)
  • v1.0.0(May 29, 2021)

    This is the initial public release of the source code for "Applied Natural Language Processing in the Enterprise" by Ankur A. Patel and Ajay Uppili Arasanipalai.

    Source code(tar.gz)
    Source code(zip)
Owner
Applied Natural Language Processing in the Enterprise
An O'Reilly Media book by Ankur A. Patel and Ajay Uppili Arasanipalai
Applied Natural Language Processing in the Enterprise
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022