ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Overview

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

LOVE is accpeted by ACL22 main conference as a long paper (oral). This is a Pytorch implementation of our paper.

What is LOVE?

LOVE, Learning Out-of-Vocabulary Embeddings, is the name of our beautiful model given by Fabian Suchanek.

LOVE can produce word embeddings for arbitrary words, including out-of-vocabulary words like misspelled words, rare words, domain-specific words.....

Specifically, LOVE follows the principle of mimick-like models [2] to generate vectors for unseen words, by learning the behavior of pre-trained embeddings using only the surface form of words, as shown in the below figure.

mimic_model

To our best knowledge, LOVE is the first one to use contrastive learning for word-level representations. The framework is shown in the below figure, and it uses various data augmentations to generate positive samples. Another distinction is that LOVE adopts a novel fully attention-based encoder named PAM to mimic the vectors from pre-trained embeddings. You can find all details in our paper. mimic_model

The benefits of LOVE?

1. Impute vectors for unseen words

As we know, pre-trained embeddings like FastText use a fixed-size vocabulary, which means the performance decreases a lot when dealing with OOV words.

LOVE can mimic the behavior of pre-trained language models (including BERT) and impute vectors for any words.

For example, mispleling is a typo word, and LOVE can impute a reasonable vector for it:

from produce_emb import produce

oov_word = 'mispleling'
emb = produce(oov_word)
print(emb[oov_word][:10])

## output [-0.0582502  -0.11268596 -0.12599416  0.09926333  0.02513208  0.01140639
 -0.02326127 -0.007608    0.01973115  0.12448607]

2. Make LMs robust with little cost

LOVE can be used in a plug-and-play fashion with FastText and BERT, where it significantly improves their robustness. For example, LOVE with 6.5M can work with FastText (900+M) together and improve its robustness, as shown in the figure: mimic_model

The usage of LOVE

Clone the repository and set up the environment via "requirements.txt". Here we use python3.6.

pip install -r requirements.txt

Data preparation

In our experiments, we use the FastText as target vectors [1]. Downlaod. After downloading, put the embedding file in the path data/

Training

First you can use -help to show the arguments

python train.py -help

Once completing the data preparation and environment setup, we can train the model via train.py. We have also provided sample datasets, you can just run the mode without downloading.

python train.py -dataset data/wiki_100.vec

Evaulation

To show the intrinsic results of our model, you can use the following command and we have provided the trained model we used in our paper.

python evaluate.py

## expected output
model parameters:~6.5M
[RareWord]: [plugin], 42.6476207426462 
[MEN  ]: [plugin], 68.47815031602434 
[SimLex]: [plugin], 35.02258000865248 
[rel353]: [plugin], 55.8950046345804 
[simverb]: [plugin], 28.7233237185531 
[muturk]: [plugin], 63.77020916555088 

Reference

[1] Bojanowski, Piotr, et al. "Enriching word vectors with subword information." Transactions of the Association for Computational Linguistics 5 (2017): 135-146.

[2] Pinter, Yuval, Robert Guthrie, and Jacob Eisenstein. "Mimicking Word Embeddings using Subword RNNs." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.

Owner
Lihu Chen
A PhD student of IP Paris! Enjoy Coding!
Lihu Chen
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022