Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Overview

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification (2021) by Hai Phan and Anh Nguyen.

If you use this software, please consider citing:

@article{hai2021deepface,
  title={DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification},
  author={Hai Phan, Anh Nguyen},
  journal={arXiv preprint arXiv:2112.04016},
  year={2021}
}

1. Requirements

Python >= 3.5
Pytorch > 1.0
Opencv >= 3.4.4
pip install tqmd

2. Download datasets and pretrained models

  1. Download LFW, out-of-distribution (OOD) LFW test sets, and pretrained models: Google Drive

  2. Create the following folders:

mkdir data
mkdir pretrained
  1. Extract LFW datasets (e.g. lfw_crop_96x112.tar.gz) to data/
  2. Copy models (e.g. resnet18_110.pth) to pretrained/

3. How to run

3.1 Run examples

  • Run testing LFW images

    • -mask, -sunglass, -crop: flags for using corresponding OOD query images (i.e., faces with masks or sunglasses or randomly-cropped images).
    bash run_test.sh
    
  • Run demo: The demo gives results of top-5 images of stage 1 and stage 2 (including flow visualization of EMD).

    • -mask: image retrieval using a masked-face query image given a gallery of normal LFW images.
    • -sunglass and -crop: similar to the setup of -mask.
    • The results will be saved in the results/demo directory.
    bash run_demo.sh
    
  • Run retrieval using the full LFW gallery

    • Set the argument args.data_folder to data in .sh files.

3.2 Reproduce results

  • Make sure lfw-align-128 and lfw-align-128-crop70 dataset in data/ directory (e.g. data/lfw-align-128-crop70), ArcFace [2] model resnet18_110.pth in pretrained/ directory (e.g. pretrained/resnet18_110.pth). Run the following commands to reproduce the Table 1 results in our paper.

    • Arguments:

      • Methods can be apc, uniform, or sc
      • -l: 4 or 8 for 4x4 and 8x8 respectively.
      • -a: alpha parameter mentioned in the paper.
    • Normal LFW with 1680 classes:

    python test_face.py -method apc -fm arcface -d lfw_1680 -a -1 -data_folder data -l 4
    
    • LFW-crop:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -crop 
    
    • Note: The full LFW dataset have 5,749 people for a total of 13,233 images; however, only 1,680 people have two or more images (See LFW for details). However, in our normal LFW dataset, the identical images will not be considered in face identification. So, the difference between lfw and lfw_1680 is that the lfw setup uses the full LFW (including people with a single image) but the lfw_1680 uses only 1,680 people who have two or more images.
  • For other OOD datasets, run the following command:

    • LFW-mask:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -mask 
    
    • LFW-sunglass:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -sunglass 
    

3.3 Run visualization with two images

python visualize_faces.py -method [methods] -fm [face models] -model_path [model dir] -in1 [1st image] -in2 [2nd image] -weight [1/0: showing weight heatmaps] 

The results are in results/flow and results/heatmap (if -weight flag is on).

3.4 Use your own images

  1. Facial alignment. See align_face.py for details.
pip install scikit-image
pip install face-alignment
  • For making face alignment with size of 160x160 for Arcface (128x128) and FaceNet (160x160), the reference points are as follow (see function alignment in align_face.py).
ref_pts = [ [61.4356, 54.6963],[118.5318, 54.6963], [93.5252, 90.7366],[68.5493, 122.3655],[110.7299, 122.3641]]
crop_size = (160, 160)
  1. Create a folder including all persons (folders: name of person) and put it to '/data'
  2. Create a txt file with format: [image_path],[label] of that folder (See lfw file for details)
  3. Modify face loader: Add your txt file in function: get_face_dataloader.

4. License

MIT

5. References

  1. W. Zhao, Y. Rao, Z. Wang, J. Lu, Zhou. Towards interpretable deep metric learning with structural matching, ICCV 2021 DIML
  2. J. Deng, J. Guo, X. Niannan, and StefanosZafeiriou. Arcface: Additive angular margin loss for deepface recognition, CVPR 2019 Arcface Pytorch
  3. H. Wang, Y. Wang, Z. Zhou, X. Ji, DihongGong, J. Zhou, Z. Li, W. Liu. Cosface: Large margin cosine loss for deep face recognition, CVPR 2018 CosFace Pytorch
  4. F. Schroff, D. Kalenichenko, J. Philbin. Facenet: A unified embedding for face recognition and clustering. CVPR 2015 FaceNet Pytorch
  5. L. Weiyang, W. Yandong, Y. Zhiding, L. Ming, R. Bhiksha, S. Le. SphereFace: Deep Hypersphere Embedding for Face Recognition, CVPR 2017 sphereface, sphereface pytorch
  6. Chi Zhang, Yujun Cai, Guosheng Lin, Chunhua Shen. Deepemd: Differentiable earth mover’s distance for few-shotlearning, CVPR 2020 paper
Owner
Anh M. Nguyen
Learning in the deep...
Anh M. Nguyen
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022