PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Overview

Future urban scene generation through vehicle synthesis

This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Through Vehicle Synthesis" [arXiv]

Model architecture

Our framework is composed by two stages:

  1. Interpretable information extraction: high level interpretable information is gathered from raw RGB frames (bounding boxes, trajectories, keypoints).
  2. Novel view completion: condition a reprojected 3D model with the original 2D appearance.

Multi stage pipeline

Abstract

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stage approach, where interpretable information are included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user.

Sequence result example


Code

Code was tested with an Anaconda environment (Python version 3.6) on both Linux and Windows based systems.

Install

Run the following commands to install all requirements in a new virtual environment:

conda create -n <env_name> python=3.6
conda activate <env_name>
pip install -r requirements.txt

Install PyTorch package (version 1.3 or above).

How to run test

To run the demo of our project, please firstly download all the required data at this link and save them in a of your choice. We tested our pipeline on the Cityflow dataset that already have annotated bounding boxes and trajectories of vehicles.

The test script is run_test.py that expects some arguments as mandatory: video, 3D keypoints and checkpoints directories.

python run_test.py <data_dir>/<video_dir> <data_dir>/pascal_cads <data_dir>/checkpoints --det_mode ssd512|yolo3|mask_rcnn --track_mode tc|deepsort|moana --bbox_scale 1.15 --device cpu|cuda

Add the parameter --inpaint to use the inpainting on the vehicle instead of the static background.

Description and GUI usage

If everything went well, you should see the main GUI in which you can choose whichever vehicle you want that was detected in the video frame or change the video frame.

GUI window

The commands working on this window are:

  1. RIGHT ARROW = go to next frame
  2. LEFT ARROW = go to previous frame
  3. SINGLE MOUSE LEFT BUTTON CLICK = visualize car trajectory
  4. BACKSPACE = delete the drawn trajectories
  5. DOUBLE MOUSE LEFT BUTTON CLICK = select one of the vehicles bounding boxes

Once you selected some vehicles of your chioce by double-clicking in their bounding boxes, you can push the RUN button to start the inference. The resulting frames will be saved in ./results directory.

Cite

If you find this repository useful for your research, please cite the following paper:

@inproceedings{simoni2021future,
  title={Future urban scenes generation through vehicles synthesis},
  author={Simoni, Alessandro and Bergamini, Luca and Palazzi, Andrea and Calderara, Simone and Cucchiara, Rita},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  pages={4552--4559},
  year={2021},
  organization={IEEE}
}
Owner
Alessandro Simoni
PhD Student @ University of Modena and Reggio Emilia (@aimagelab)
Alessandro Simoni
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022