nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

Related tags

Deep LearningnextPARS
Overview

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

Here you will find the scripts necessary to produce the scores described in our paper from fastq files obtained during the experiment.

Install Prerequisites

First install git:

sudo apt-get update
sudo apt-get install git-all

Then clone this repository

git clone https://github.com/jwill123/nextPARS.git

Now, ensure the necessary python packages are installed, and can be found in the $PYTHONPATH environment variable by running the script packages_for_nextPARS.sh in the nextPARS directory.

cd nextPARS/conf
chmod 775 packages_for_nextPARS.sh
./packages_for_nextPARS.sh

Convert fastq to tab

In order to go from the fastq outputs of the nextPARS experiments to a format that allows us to calculate scores, first map the reads in the fastq files to a reference using the program of your choice. Once you have obtained a bam file, use PARSParser_0.67.b.jar. This program counts the number of reads beginning at each position (which indicates a cut site for the enzyme in the file name) and outputs it in .tab format (count values for each position are separated by semi-colons).

Example usage:

java -jar PARSParser_0.67.b.jar -a bamFile -b bedFile -out outFile -q 20 -m 5

where the required arguments are:

  • -a gives the bam file of interest
  • -b is the bed file for the reference
  • -out is the name given to the output file in .tab format

Also accepts arguments:

  • -q for minimum mapping quality for reads to be included [default = 0]
  • -m for minimum average counts per position for a given transcript [default = 5.0]

Sample Data

There are sample data files found in the folder nextPARS/data, as well as the necessary fasta files in nextPARS/data/SEQS/PROBES, and the reference structures obtained from PDB in nextPARS/data/STRUCTURES/REFERENCE_STRUCTURES There are also 2 folders of sample output files from the PARSParser_0.67.b.jar program that can be used as further examples of the nextPARS score calculations described below. These folders are found in nextPARS/data/PARSParser_outputs. NOTE: these are randomly generated sequences with random enzyme values, so they are just to be used as examples for the usage of the scripts, good results should not be expected with these.

nextPARS Scores

To obtain the scores from nextPARS experiments, use the script get_combined_score.py. Sample data for the 5 PDB control structures can be found in the folder nextPARS/data/

There are a number of different command line options in the script, many of which were experimental or exploratory and are not relevant here. The useful ones in this context are the following:

  • Use the -i option [REQUIRED] to indicate the molecule for which you want scores (all available data files will be included in the calculations -- molecule name must match that in the data file names)

  • Use the -inDir option to indicate the directory containing the .tab files with read counts for each V1 and S1 enzyme cuts

  • Use the -f option to indicate the path to the fasta file for the input molecule

  • Use the -s option to produce an output Structure Preference Profile (SPP) file. Values for each position are separated by semi-colons. Here 0 = paired position, 1 = unpaired position, and NA = position with a score too low to determine its configuration.

  • Use the -o option to output the calculated scores, again with values for each position separated by semi-colons.

  • Use the --nP_only option to output the calculated nextPARS scores before incorporating the RNN classifier, again with values for each position separated by semi-colons.

  • Use the option {-V nextPARS} to produce an output with the scores that is compatible with the structure visualization program VARNA1

  • Use the option {-V spp} to produce an output with the SPP values that is compatible with VARNA.

  • Use the -t option to change the threshold value for scores when determining SPP values [default = 0.8, or -0.8 for negative scores]

  • Use the -c option to change the percentile cap for raw values at the beginning of calculations [default = 95]

  • Use the -v option to print some statistics in the case that there is a reference CT file available ( as with the example molecules, found in nextPARS/data/STRUCTURES/REFERENCE_STRUCTURES ). If not, will still print nextPARS scores and info about the enzyme .tab files included in the calculations.

Example usage:

# to produce an SPP file for the molecule TETp4p6
python get_combined_score.py -i TETp4p6 -s
# to produce a Varna-compatible output with the nextPARS scores for one of the 
# randomly generated example molecules
python get_combined_score.py -i test_37 -inDir nextPARS/data/PARSParser_outputs/test1 \
  -f nextPARS/data/PARSParser_outputs/test1/test1.fasta -V nextPARS

RNN classifier (already incorporated into the nextPARS scores above)

To run the RNN classifier separately, using a different experimental score input (in .tab format), it can be run like so with the predict2.py script:

python predict2.py -f molecule.fasta -p scoreFile.tab -o output.tab

Where the command line options are as follows:

  • the -f option [REQUIRED] is the input fasta file
  • the -p option [REQUIRED] is the input Score tab file
  • the -o option [REQUIRED] is the final Score tab output file.
  • the -w1 option is the weight for the RNN score. [default = 0.5]
  • the -w2 option is the weight for the experimental data score. [default = 0.5]

References:

  1. Darty,K., Denise,A. and Ponty,Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinforma. Oxf. Engl., 25, 1974–197
Owner
Jesse Willis
Jesse Willis
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022