ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

Overview

ROCKET + MINIROCKET

ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels.

Data Mining and Knowledge Discovery / arXiv:1910.13051 (preprint)

Most methods for time series classification that attain state-of-the-art accuracy have high computational complexity, requiring significant training time even for smaller datasets, and are intractable for larger datasets. Additionally, many existing methods focus on a single type of feature such as shape or frequency. Building on the recent success of convolutional neural networks for time series classification, we show that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods. Using this method, it is possible to train and test a classifier on all 85 ‘bake off’ datasets in the UCR archive in < 2 h, and it is possible to train a classifier on a large dataset of more than one million time series in approximately 1 h.

Please cite as:

@article{dempster_etal_2020,
  author = {Dempster, Angus and Petitjean, Fran\c{c}ois and Webb, Geoffrey I},
  title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
  year = {2020},
  journal = {Data Mining and Knowledge Discovery},
  doi = {https://doi.org/10.1007/s10618-020-00701-z}
}

sktime

An implementation of ROCKET (with basic multivariate capability) is available through sktime. See the examples.

MINIROCKET *NEW*

MINIROCKET is up to 75× faster than ROCKET on larger datasets.

Results

UCR Archive

Scalability

Code

rocket_functions.py

Requirements

  • Python;
  • Numba;
  • NumPy;
  • scikit-learn (or equivalent).

Example

from rocket_functions import generate_kernels, apply_kernels
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# generate random kernels
kernels = generate_kernels(X_training.shape[-1], 10_000)

# transform training set and train classifier
X_training_transform = apply_kernels(X_training, kernels)
classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

# transform test set and predict
X_test_transform = apply_kernels(X_test, kernels)
predictions = classifier.predict(X_test_transform)

Reproducing the Experiments

reproduce_experiments_ucr.py

Arguments:
-d --dataset_names : txt file of dataset names
-i --input_path    : parent directory for datasets
-o --output_path   : path for results
-n --num_runs      : number of runs (optional, default 10)
-k --num_kernels   : number of kernels (optional, default 10,000)

Examples:
> python reproduce_experiments_ucr.py -d bakeoff.txt -i ./Univariate_arff -o ./
> python reproduce_experiments_ucr.py -d additional.txt -i ./Univariate_arff -o ./ -n 1 -k 1000

reproduce_experiments_scalability.py

Arguments:
-tr --training_path : training dataset (csv)
-te --test_path     : test dataset (csv)
-o  --output_path   : path for results
-k  --num_kernels   : number of kernels

Examples:
> python reproduce_experiments_scalability.py -tr training.csv -te test.csv -o ./ -k 100
> python reproduce_experiments_scalability.py -tr training.csv -te test.csv -o ./ -k 1000

Acknowledgements

We thank Professor Eamonn Keogh and all the people who have contributed to the UCR time series classification archive. Figures in our paper showing the ranking of different classifiers and variants of ROCKET were produced using code from Ismail Fawaz et al. (2019).

🚀
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022