Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

Overview




CycleGAN

PyTorch | project page | paper

Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for example:

New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that enables fast and memory-efficient training.

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu*, Taesung Park*, Phillip Isola, Alexei A. Efros
Berkeley AI Research Lab, UC Berkeley
In ICCV 2017. (* equal contributions)

This package includes CycleGAN, pix2pix, as well as other methods like BiGAN/ALI and Apple's paper S+U learning.
The code was written by Jun-Yan Zhu and Taesung Park.
Update: Please check out PyTorch implementation for CycleGAN and pix2pix. The PyTorch version is under active development and can produce results comparable or better than this Torch version.

Other implementations:

[Tensorflow] (by Harry Yang), [Tensorflow] (by Archit Rathore), [Tensorflow] (by Van Huy), [Tensorflow] (by Xiaowei Hu), [Tensorflow-simple] (by Zhenliang He), [TensorLayer] (by luoxier), [Chainer] (by Yanghua Jin), [Minimal PyTorch] (by yunjey), [Mxnet] (by Ldpe2G), [lasagne/Keras] (by tjwei), [Keras] (by Simon Karlsson)

Applications

Monet Paintings to Photos

Collection Style Transfer

Object Transfiguration

Season Transfer

Photo Enhancement: Narrow depth of field

Prerequisites

  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)
  • For MAC users, you need the Linux/GNU commands gfind and gwc, which can be installed with brew install findutils coreutils.

Getting Started

Installation

luarocks install nngraph
luarocks install class
luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Clone this repo:
git clone https://github.com/junyanz/CycleGAN
cd CycleGAN

Apply a Pre-trained Model

bash ./datasets/download_dataset.sh ae_photos
  • Download the pre-trained model style_cezanne (For CPU model, use style_cezanne_cpu):
bash ./pretrained_models/download_model.sh style_cezanne
  • Now, let's generate Paul Cézanne style images:
DATA_ROOT=./datasets/ae_photos name=style_cezanne_pretrained model=one_direction_test phase=test loadSize=256 fineSize=256 resize_or_crop="scale_width" th test.lua

The test results will be saved to ./results/style_cezanne_pretrained/latest_test/index.html.
Please refer to Model Zoo for more pre-trained models. ./examples/test_vangogh_style_on_ae_photos.sh is an example script that downloads the pretrained Van Gogh style network and runs it on Efros's photos.

Train

  • Download a dataset (e.g. zebra and horse images from ImageNet):
bash ./datasets/download_dataset.sh horse2zebra
  • Train a model:
DATA_ROOT=./datasets/horse2zebra name=horse2zebra_model th train.lua
  • (CPU only) The same training command without using a GPU or CUDNN. Setting the environment variables gpu=0 cudnn=0 forces CPU only
DATA_ROOT=./datasets/horse2zebra name=horse2zebra_model gpu=0 cudnn=0 th train.lua
  • (Optionally) start the display server to view results as the model trains. (See Display UI for more details):
th -ldisplay.start 8000 0.0.0.0

Test

  • Finally, test the model:
DATA_ROOT=./datasets/horse2zebra name=horse2zebra_model phase=test th test.lua

The test results will be saved to an HTML file here: ./results/horse2zebra_model/latest_test/index.html.

Model Zoo

Download the pre-trained models with the following script. The model will be saved to ./checkpoints/model_name/latest_net_G.t7.

bash ./pretrained_models/download_model.sh model_name
  • orange2apple (orange -> apple) and apple2orange: trained on ImageNet categories apple and orange.
  • horse2zebra (horse -> zebra) and zebra2horse (zebra -> horse): trained on ImageNet categories horse and zebra.
  • style_monet (landscape photo -> Monet painting style), style_vangogh (landscape photo -> Van Gogh painting style), style_ukiyoe (landscape photo -> Ukiyo-e painting style), style_cezanne (landscape photo -> Cezanne painting style): trained on paintings and Flickr landscape photos.
  • monet2photo (Monet paintings -> real landscape): trained on paintings and Flickr landscape photographs.
  • cityscapes_photo2label (street scene -> label) and cityscapes_label2photo (label -> street scene): trained on the Cityscapes dataset.
  • map2sat (map -> aerial photo) and sat2map (aerial photo -> map): trained on Google maps.
  • iphone2dslr_flower (iPhone photos of flowers -> DSLR photos of flowers): trained on Flickr photos.

CPU models can be downloaded using:

bash pretrained_models/download_model.sh <name>_cpu

, where <name> can be horse2zebra, style_monet, etc. You just need to append _cpu to the target model.

Training and Test Details

To train a model,

DATA_ROOT=/path/to/data/ name=expt_name th train.lua

Models are saved to ./checkpoints/expt_name (can be changed by passing checkpoint_dir=your_dir in train.lua).
See opt_train in options.lua for additional training options.

To test the model,

DATA_ROOT=/path/to/data/ name=expt_name phase=test th test.lua

This will run the model named expt_name in both directions on all images in /path/to/data/testA and /path/to/data/testB.
A webpage with result images will be saved to ./results/expt_name (can be changed by passing results_dir=your_dir in test.lua).
See opt_test in options.lua for additional test options. Please use model=one_direction_test if you only would like to generate outputs of the trained network in only one direction, and specify which_direction=AtoB or which_direction=BtoA to set the direction.

There are other options that can be used. For example, you can specify resize_or_crop=crop option to avoid resizing the image to squares. This is indeed how we trained GTA2Cityscapes model in the projet webpage and Cycada model. We prepared the images at 1024px resolution, and used resize_or_crop=crop fineSize=360 to work with the cropped images of size 360x360. We also used lambda_identity=1.0.

Datasets

Download the datasets using the following script. Many of the datasets were collected by other researchers. Please cite their papers if you use the data.

bash ./datasets/download_dataset.sh dataset_name
  • facades: 400 images from the CMP Facades dataset. [Citation]
  • cityscapes: 2975 images from the Cityscapes training set. [Citation]. Note: Due to license issue, we do not host the dataset on our repo. Please download the dataset directly from the Cityscapes webpage. Please refer to ./datasets/prepare_cityscapes_dataset.py for more detail.
  • maps: 1096 training images scraped from Google Maps.
  • horse2zebra: 939 horse images and 1177 zebra images downloaded from ImageNet using the keywords wild horse and zebra
  • apple2orange: 996 apple images and 1020 orange images downloaded from ImageNet using the keywords apple and navel orange.
  • summer2winter_yosemite: 1273 summer Yosemite images and 854 winter Yosemite images were downloaded using Flickr API. See more details in our paper.
  • monet2photo, vangogh2photo, ukiyoe2photo, cezanne2photo: The art images were downloaded from Wikiart. The real photos are downloaded from Flickr using the combination of the tags landscape and landscapephotography. The training set size of each class is Monet:1074, Cezanne:584, Van Gogh:401, Ukiyo-e:1433, Photographs:6853.
  • iphone2dslr_flower: both classes of images were downloaded from Flickr. The training set size of each class is iPhone:1813, DSLR:3316. See more details in our paper.

Display UI

Optionally, for displaying images during training and test, use the display package.

  • Install it with: luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Then start the server with: th -ldisplay.start
  • Open this URL in your browser: http://localhost:8000

By default, the server listens on localhost. Pass 0.0.0.0 to allow external connections on any interface:

th -ldisplay.start 8000 0.0.0.0

Then open http://(hostname):(port)/ in your browser to load the remote desktop.

Setup Training and Test data

To train CycleGAN model on your own datasets, you need to create a data folder with two subdirectories trainA and trainB that contain images from domain A and B. You can test your model on your training set by setting phase='train' in test.lua. You can also create subdirectories testA and testB if you have test data.

You should not expect our method to work on just any random combination of input and output datasets (e.g. cats<->keyboards). From our experiments, we find it works better if two datasets share similar visual content. For example, landscape painting<->landscape photographs works much better than portrait painting <-> landscape photographs. zebras<->horses achieves compelling results while cats<->dogs completely fails. See the following section for more discussion.

Failure cases

Our model does not work well when the test image is rather different from the images on which the model is trained, as is the case in the figure to the left (we trained on horses and zebras without riders, but test here one a horse with a rider). See additional typical failure cases here. On translation tasks that involve color and texture changes, like many of those reported above, the method often succeeds. We have also explored tasks that require geometric changes, with little success. For example, on the task of dog<->cat transfiguration, the learned translation degenerates into making minimal changes to the input. We also observe a lingering gap between the results achievable with paired training data and those achieved by our unpaired method. In some cases, this gap may be very hard -- or even impossible,-- to close: for example, our method sometimes permutes the labels for tree and building in the output of the cityscapes photos->labels task.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{CycleGAN2017,
  title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on},
  year={2017}
}

Related Projects:

contrastive-unpaired-translation (CUT)
pix2pix-Torch | pix2pixHD | BicycleGAN | vid2vid | SPADE/GauGAN
iGAN | GAN Dissection | GAN Paint

Cat Paper Collection

If you love cats, and love reading cool graphics, vision, and ML papers, please check out the Cat Paper Collection.

Acknowledgments

Code borrows from pix2pix and DCGAN. The data loader is modified from DCGAN and Context-Encoder. The generative network is adopted from neural-style with Instance Normalization.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022