Consistency Regularization for Adversarial Robustness

Overview

Consistency Regularization for Adversarial Robustness

Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jihoon Tack, Sihyun Yu, Jongheon Jeong, Minseon Kim, Sung Ju Hwang, and Jinwoo Shin.

1. Dependencies

conda create -n con-adv python=3
conda activate con-adv

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch 

pip install git+https://github.com/fra31/auto-attack
pip install advertorch tensorboardX

2. Training

2.1. Training option and description

The option for the training method is as follows:

  • <DATASET>: {cifar10,cifar100,tinyimagenet}
  • <AUGMENT>: {base,ccg}
  • <ADV_TRAIN OPTION>: {adv_train,adv_trades,adv_mart}

Current code are assuming l_infinity constraint adversarial training and PreAct-ResNet-18 as a base model.
To change the option, simply modify the following configurations:

  • WideResNet-34-10: --model wrn3410
  • l_2 constraint: --distance L2

2.2. Training code

Standard cross-entropy training

% Standard cross-entropy
python train.py --mode ce --augment base --dataset <DATASET>

Adversarial training

% Adversarial training
python train.py --mode <ADV_TRAIN OPTION> --augment <AUGMENT> --dataset <DATASET>

% Example: Standard AT under CIFAR-10
python train.py --mode adv_train --augment base --dataset cifar10

Consistency regularization

% Consistency regularization
python train.py --consistency --mode <ADV_TRAIN OPTION> --augment <AUGMENT> --dataset <DATASET>

% Example: Consistency regularization based on standard AT under CIFAR-10
python train.py --consistency --mode adv_train --augment ccg --dataset cifar10 

3. Evaluation

3.1. Evaluation option and description

The description for treat model is as follows:

  • <DISTANCE>: {Linf,L2,L1}, the norm constraint type
  • <EPSILON>: the epsilon ball size
  • <ALPHA>: the step size of PGD optimization
  • <NUM_ITER>: iteration number of PGD optimization

3.2. Evaluation code

Evaluate clean accuracy

python eval.py --mode test_clean_acc --dataset <DATASET> --load_path <MODEL_PATH>

Evaluate clean & robust accuracy against PGD

python eval.py --mode test_adv_acc --distance <DISTANCE> --epsilon <EPSILON> --alpha <ALPHA> --n_iters <NUM_ITER> --dataset <DATASET> --load_path <MODEL_PATH>

Evaluate clean & robust accuracy against AutoAttack

python eval.py --mode test_auto_attack --epsilon <EPSILON> --distance <DISTANCE> --dataset <DATASET> --load_path <MODEL_PATH>

Evaluate mean corruption error (mCE)

python eval.py --mode test_mce --dataset <DATASET> --load_path <MODEL_PATH>

4. Results

White box attack

Clean accuracy and robust accuracy (%) against white-box attacks on PreAct-ResNet-18 trained on CIFAR-10.
We use l_infinity threat model with epsilon = 8/255.

Method Clean PGD-20 PGD-100 AutoAttack
Standard AT 84.48 46.09 45.89 40.74
+ Consistency (Ours) 84.65 54.86 54.67 47.83
TRADES 81.35 51.41 51.13 46.41
+ Consistency (Ours) 81.10 54.86 54.68 48.30
MART 81.35 49.60 49.41 41.89
+ Consistency (Ours) 81.10 55.31 55.16 47.02

Unseen adversaries

Robust accuracy (%) of PreAct-ResNet-18 trained with of l_infinity epsilon = 8/255 constraint against unseen attacks.
For unseen attacks, we use PGD-100 under different sized l_infinity epsilon balls, and other types of norm balls.

Method l_infinity, eps=16/255 l_2, eps=300/255 l_1, eps=4000/255
Standard AT 15.77 26.91 32.44
+ Consistency (Ours) 22.49 34.43 42.45
TRADES 23.87 28.31 28.64
+ Consistency (Ours) 27.18 37.11 46.73
MART 20.08 30.15 27.00
+ Consistency (Ours) 27.91 38.10 43.29

Mean corruption error

Mean corruption error (mCE) (%) of PreAct-ResNet-18 trained on CIFAR-10, and tested with CIFAR-10-C dataset

Method mCE
Standard AT 24.05
+ Consistency (Ours) 22.06
TRADES 26.17
+ Consistency (Ours) 24.05
MART 27.75
+ Consistency (Ours) 26.75

Reference

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022