PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Related tags

Deep LearningCI-ToD
Overview

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

License: MIT

This repository contains the PyTorch implementation and the data of the paper: Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System. Libo Qin, Tianbao Xie, Shijue Huang, Qiguang Chen, Xiao Xu, Wanxiang Che. EMNLP2021.[PDF] .

This code has been written using PyTorch >= 1.1. If you use any source codes or the datasets included in this toolkit in your work, please cite the following paper. The bibtex are listed below:

@article{qin2021CIToD,
  title={Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System},
  author={Qin, Libo and Xie, Tianbao and Huang, Shijue and Chen, Qiguang and Xu, Xiao and Che, Wanxiang},
  journal={arXiv preprint arXiv:2109.11292},
  year={2021}
}

Abstract

Consistency Identification has obtained remarkable success on open-domain dialogue, which can be used for preventing inconsistent response generation. However, in contrast to the rapid development in open-domain dialogue, few efforts have been made to the task-oriented dialogue direction. In this paper, we argue that consistency problem is more urgent in task-oriented domain. To facilitate the research, we introduce CI-ToD, a novel dataset for Consistency Identification in Task-oriented Dialog system. In addition, we not only annotate the single label to enable the model to judge whether the system response is contradictory, but also provide more finegrained labels (i.e., Dialogue History Inconsistency(HI), User Query Inconsistency(QI) and Knowledge Base Inconsistency(KBI), which are as shown in the figure below) to encourage model to know what inconsistent sources lead to it. Empirical results show that state-of-the-art methods only achieve performance of 51.3%, which is far behind the human performance of 93.2%, indicating that there is ample room for improving consistency identification ability. Finally, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide guidance for future directions.

Dataset

We construct the CI-ToD dataset based on the KVRET dataset. We release our dataset together with the code, you can find it under data.

The basic format of the dataset is as follows, including multiple rounds of dialogue, knowledge base and related inconsistency annotations (KBI, QI, HI):

[
    {
        "id": 74,
        "dialogue": [
            {
                "turn": "driver",
                "utterance": "i need to find out the date and time for my swimming_activity"
            },
            {
                "turn": "assistant",
                "utterance": "i have two which one i have one for the_14th at 6pm and one for the_12th at 7pm"
            }
        ],
        "scenario": {
            "kb": {
                "items": [
                    {
                        "date": "the_11th",
                        "time": "9am",
                        "event": "tennis_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "father"
                    },
                    {
                        "date": "the_18th",
                        "time": "2pm",
                        "event": "football_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "martha"
                    },
                    .......
                ]
            },
            "qi": "0",
            "hi": "0",
            "kbi": "0"
        },
        "HIPosition": []
    }

KBRetriever_DC

Dataset QI HI KBI SUM
calendar_train.json 174 56 177 595
calendar_dev.json 28 9 24 74
calendar_test.json 23 8 21 74
navigate_train.json 453 386 591 1110
navigate_dev.json 55 41 69 139
navigate_test.json 48 44 71 138
weather_new_train.json 631 132 551 848
weather_new_dev.json 81 14 66 106
weather_new_test.json 72 12 69 106

Model

Here is the model structure of non pre-trained model (a) and pre-trained model (b and c).

Preparation

we provide some pre-trained baselines on our proposed CI-TOD dataset, the packages we used are listed follow:

-- scikit-learn==0.23.2
-- numpy=1.19.1
-- pytorch=1.1.0
-- fitlog==0.9.13
-- tqdm=4.49.0
-- sklearn==0.0
-- transformers==3.2.0

We highly suggest you using Anaconda to manage your python environment. If so, you can run the following command directly on the terminal to create the environment:

conda env create -f py3.6pytorch1.1_.yaml

How to run it

The script train.py acts as a main function to the project, you can run the experiments by the following commands:

python -u train.py --cfg KBRetriver_DC/KBRetriver_DC_BERT.cfg

The parameters we use are configured in the configure. If you need to adjust them, you can modify them in the relevant files or append parameters to the command.

Finally, you can check the results in logs folder.Also, you can run fitlog command to visualize the results:

fitlog log logs/

Baseline Experiment Result

All experiments were performed in TITAN_XP except for BART, which was performed on Tesla V100 PCIE 32 GB. These may not be the best results. Therefore, the parameters can be adjusted to obtain better results.

KBRetriever_DC

Baseline category Baseline method QI F1 HI F1 KBI F1 Overall Acc
Non Pre-trained Model ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
Pre-trained Model BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Human Performance 0.962 0.805 0.920 0.932

Leaderboard

If you submit papers with these datasets, please consider sending a pull request to merge your results onto the leaderboard. By submitting, you acknowledge that your results are obtained purely by training on the training datasets and tuned on the dev datasets (e.g. you only evaluted on the test set once).

KBRetriever_DC

Baseline method QI F1 HI F1 KBI F1 Overall Acc
ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Performance 0.962 0.805 0.920 0.932

Acknowledgement

Thanks for patient annotation from all taggers Lehan Wang, Ran Duan, Fuxuan Wei, Yudi Zhang, Weiyun Wang!

Thanks for supports and guidance from our adviser Wanxiang Che!

Contact us

  • Just feel free to open issues or send us email(me, Tianbao) if you have any problems or find some mistakes in this dataset.
Owner
Libo Qin
Ph.D. Candidate in Harbin Institute of Technology @HIT-SCIR. Homepage: http://ir.hit.edu.cn/~lbqin/
Libo Qin
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
MohammadReza Sharifi 27 Dec 13, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023