MaskTrackRCNN for video instance segmentation based on mmdetection

Overview

MaskTrackRCNN for video instance segmentation

Introduction

This repo serves as the official code release of the MaskTrackRCNN model for video instance segmentation described in the tech report:

@article{ Yang2019vis,
  author = {Linjie Yang and Yuchen Fan and Ning Xu},  
  title = {Video instance segmentation},
  journal = {CoRR},
  volume = {abs/1905.04804},
  year = {2019},
  url = {https://arxiv.org/abs/1905.04804}
}

In this work, a new task video instance segmentation is presented. Video instance segmentation extends the image instance segmentation task from the image domain to the video domain. The new problem aims at simultaneous detection, segmentation and tracking of object instances in videos. YouTubeVIS, a new dataset tailored for this task is collected based on the current largest video object segmentation dataset YouTubeVOS. Sample annotations of a video clip can be seen below. We also proposed an algorithm to jointly detect, segment, and track object instances in a video, named MaskTrackRCNN. A tracking head is added to the original MaskRCNN model to match objects across frames. An overview of the algorithm is shown below.

Installation

This repo is built based on mmdetection commit hash f3a939f. Please refer to INSTALL.md to install the library. You also need to install a customized COCO API for YouTubeVIS dataset. You can use following commands to create conda env with all dependencies.

conda create -n MaskTrackRCNN -y
conda activate MaskTrackRCNN
conda install -c pytorch pytorch=0.4.1 torchvision cuda92 -y
conda install -c conda-forge cudatoolkit-dev=9.2 opencv -y
conda install cython -y
pip install git+https://github.com/youtubevos/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"
bash compile.sh
pip install .

You may also need to follow #1 to load MSCOCO pretrained models.

Model training and evaluation

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on YouTubeVIS based on a MSCOCO pretrained checkpoint (link).

Training

  1. Download YouTubeVIS from here.
  2. Symlink the train/validation dataset to $MMDETECTION/data folder. Put COCO-style annotations under $MMDETECTION/data/annotations.
mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── train
│   ├── val
│   ├── annotations
│   │   ├── instances_train_sub.json
│   │   ├── instances_val_sub.json
  1. Run python3 tools/train.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py to train the model. For reference to arguments such as learning rate and model parameters, please refer to configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py

Evaluation

Our pretrained model is available for download at Google Drive. Run the following command to evaluate the model on YouTubeVIS.

python3 tools/test_video.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py [MODEL_PATH] --out [OUTPUT_PATH] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.json. YouTubeVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license.

Contact

If you have any questions regarding the repo, please contact Linjie Yang ([email protected]) or create an issue.

The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023