Machine Learning in Asset Management (by @firmai)

Overview

Machine Learning in Asset Management

If you like this type of content then visit ML Quant site below:

https://www.ml-quant.com/


Part One

Follow this link for SSRN paper.

If you feel like citing something you can use:

Snow, D (2020). Machine Learning in Asset Management—Part 1: Portfolio Construction—Trading Strategies. The Journal of Financial Data Science, Winter 2020, 2 (1) 10-23.

This is the first in a series of articles dealing with machine learning in asset management. Asset management can be broken into the following tasks: (1) portfolio construction, (2) risk management, (3) capital management, (4) infrastructure and deployment, and (5) sales and marketing. This article focuses on portfolio construction using machine learning. Historically, algorithmic trading could be more narrowly defined as the automation of sell-side trade execution, but since the introduction of more advanced algorithms, the definition has grown to include idea generation, alpha factor design, asset allocation, position sizing, and the testing of strategies. Machine learning, from the vantage of a decision-making tool, can help in all these areas.

Editors: Frank J. Fabozzi | Marcos Lopéz de Prado | Joseph Simonian

This paper investigates various machine learning trading and portfolio optimisation models and techniques. The notebooks to this paper are Python based. By last count there are about 15 distinct trading varieties and around 100 trading strategies. Code and data are made available where appropriate. The hope is that this paper will organically grow with future developments in machine learning and data processing techniques. All feedback, contributions and criticisms are highly encouraged. You can find my contact details on the website, FirmAI.

Trading Strategies


1. Tiny CTA
Resources:
See this paper and blog for further explanation.
Data, Code


2. Tiny RL
Resources:
See this paper and/or blog for further explanation.
Data, Code


3. Tiny VIX CMF
Resources:
Data, Code


4. Quantamental
Resources:
Web-scrapers, Data, Code, Interactive Report, Paper.


5. Earnings Surprise
Resources:
Code, Paper


6. Bankruptcy Prediction
Resources:
Data, Code, Paper


7. Filing Outcomes
Resources:
Data


8. Credit Rating Arbitrage
Resources:
Code


9. Factor Investing:
Resources:
Paper, Code, Data


10. Systematic Global Macro
Resources:
Data, Code


11. Mixture Models
Resources:
Data, Code


12. Evolutionary
Resources:
Code, Repo


13. Agent Strategy
Resources:
Code, Repo


14. Stacked Trading
Resources:
Code, Blog


15. Deep Trading
Resources:
Code, Repo


Part Two:

Snow, D (2020). Machine Learning in Asset Management—Part 2: Portfolio Construction—Weight Optimization. The Journal of Financial Data Science, Spring 2020, 2 (1) 10-23.

This is the second in a series of articles dealing with machine learning in asset management. This article focuses on portfolio weighting using machine learning. Following from the previous article (Snow 2020), which looked at trading strategies, this article identifies different weight optimization methods for supervised, unsupervised, and reinforcement learning frameworks. In total, seven submethods are summarized with the code made available for further exploration.

Weight Optimisation (JFDS)


1. Deep Portfolio
Resources:
Data, Code, Paper


2. Linear Regression
Resources:
Code, Paper


3. Bayesian Sentiment
Resources:
Code


4. PCA and Hierarchical
Resource:
Code


5. HRP
Resources:
Data, Code


6. Network Graph
Resources:
Code


7. RL Deep Deterministic
Resources:
Code

Weight Optimisation (SSRN)


1. Online Portfolio Selection (OLPS)
Resources:
Code

Other (SSRN)


1. GANVaR
Resources:
Code


All Data and Code


Top 1% SSRN paper downloads

All Time Top 10 Paper :

Applied Computing eJournal, CompSciRN: Algorithms, CompSciRN: Clustering, Banking & Financial Institutions eJournals, CompSciRN: Artificial Intelligence, Econometric Modeling: Capital Markets - Portfolio Theory eJournal, Machine Learning eJournal

Other Projects

Other FirmAI projects include AtsPy automating Python's best time series models, PandaPy a data structure solutions that has the speed of NumPy and the usability of Pandas (10x to 50x faster), FairPut a holistic approach to implement fair machine learning outputs at the individual and group level, PandasVault a package for advanced pandas functions and code snippets, and ICR an interactive and fully automated corporate report built with Python.

Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022