This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Overview

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots

Blind2Unblind

Citing Blind2Unblind

@inproceedings{wang2022blind2unblind,
  title={Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots}, 
  author={Zejin Wang and Jiazheng Liu and Guoqing Li and Hua Han},
  booktitle={International Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Installation

The model is built in Python3.8.5, PyTorch 1.7.1 in Ubuntu 18.04 environment.

Data Preparation

1. Prepare Training Dataset

  • For processing ImageNet Validation, please run the command

    python ./dataset_tool.py
  • For processing SIDD Medium Dataset in raw-RGB, please run the command

    python ./dataset_tool_raw.py

2. Prepare Validation Dataset

​ Please put your dataset under the path: ./Blind2Unblind/data/validation.

Pretrained Models

The pre-trained models are placed in the folder: ./Blind2Unblind/pretrained_models

# # For synthetic denoising
# gauss25
./pretrained_models/g25_112f20_beta19.7.pth
# gauss5_50
./pretrained_models/g5-50_112rf20_beta19.4.pth
# poisson30
./pretrained_models/p30_112f20_beta19.1.pth
# poisson5_50
./pretrained_models/p5-50_112rf20_beta20.pth

# # For raw-RGB denoising
./pretrained_models/rawRGB_112rf20_beta19.4.pth

# # For fluorescence microscopy denooising
# Confocal_FISH
./pretrained_models/Confocal_FISH_112rf20_beta20.pth
# Confocal_MICE
./pretrained_models/Confocal_MICE_112rf20_beta19.7.pth
# TwoPhoton_MICE
./pretrained_models/TwoPhoton_MICE_112rf20_beta20.pth

Train

  • Train on synthetic dataset
python train_b2u.py --noisetype gauss25 --data_dir ./data/train/Imagenet_val --val_dirs ./data/validation --save_model_path ../experiments/results --log_name b2u_unet_gauss25_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0
  • Train on SIDD raw-RGB Medium dataset
python train_sidd_b2u.py --data_dir ./data/train/SIDD_Medium_Raw_noisy_sub512 --val_dirs ./data/validation --save_model_path ../experiments/results --log_name b2u_unet_raw_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0
  • Train on FMDD dataset
python train_fmdd_b2u.py --data_dir ./dataset/fmdd_sub/train --val_dirs ./dataset/fmdd_sub/validation --subfold Confocal_FISH --save_model_path ../experiments/fmdd --log_name Confocal_FISH_b2u_unet_fmdd_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0

Test

  • Test on Kodak, BSD300 and Set14

    • For noisetype: gauss25

      python test_b2u.py --noisetype gauss25 --checkpoint ./pretrained_models/g25_112f20_beta19.7.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_g25_112rf20 --beta 19.7
    • For noisetype: gauss5_50

      python test_b2u.py --noisetype gauss5_50 --checkpoint ./pretrained_models/g5-50_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_g5_50_112rf20 --beta 19.4
    • For noisetype: poisson30

      python test_b2u.py --noisetype poisson30 --checkpoint ./pretrained_models/p30_112f20_beta19.1.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_p30_112rf20 --beta 19.1
    • For noisetype: poisson5_50

      python test_b2u.py --noisetype poisson5_50 --checkpoint ./pretrained_models/p5-50_112rf20_beta20.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_p5_50_112rf20 --beta 20.0
  • Test on SIDD Validation in raw-RGB space

python test_sidd_b2u.py --checkpoint ./pretrained_models/rawRGB_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name validation_b2u_unet_raw_112rf20 --beta 19.4
  • Test on SIDD Benchmark in raw-RGB space
python benchmark_sidd_b2u.py --checkpoint ./pretrained_models/rawRGB_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name benchmark_b2u_unet_raw_112rf20 --beta 19.4
  • Test on FMDD Validation

    • For Confocal_FISH
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/Confocal_FISH_112rf20_beta20.pth --test_dirs ./dataset/fmdd_sub/validation --subfold Confocal_FISH --save_test_path ./test --log_name Confocal_FISH_b2u_unet_fmdd_112rf20 --beta 20.0
    • For Confocal_MICE
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/Confocal_MICE_112rf20_beta19.7.pth --test_dirs ./dataset/fmdd_sub/validation --subfold Confocal_MICE --save_test_path ./test --log_name Confocal_MICE_b2u_unet_fmdd_112rf20 --beta 19.7
    • For TwoPhoton_MICE
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/TwoPhoton_MICE_112rf20_beta20.pth --test_dirs ./dataset/fmdd_sub/validation --subfold TwoPhoton_MICE --save_test_path ./test --log_name TwoPhoton_MICE_b2u_unet_fmdd_112rf20 --beta 20.0
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022