Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

Overview

End-to-End Optimization of Scene Layout

Teaser Image Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral)

Project site, Bibtex

For help contact afluo [a.t] andrew.cmu.edu or open an issue

  • Requirements

    • Pytorch 1.2 (for everything)
    • Neural 3D Mesh Renderer - daniilidis version (for scene refinement only) For numerical stability, please modify projection.py to remove the multiplication by 0. After the change L33, L34 looks like:
    x__ = x_
    y__ = y_ 
    
    • Blender 2.79 (for 3D rendering of rooms only)
      • Please install numpy in Blender
    • matplotlib
    • numpy
    • skimage (for SPADE based shading)
    • imageio (for SPADE based shading)
    • shapely (eval only)
    • PyWavefront (for scene refinement only, loading of 3d meshes)
    • PyMesh (for scene refnement only, remeshing of SUNCG objects)
    • 1 Nvidia GPU

Download checkpoints here, download metadata here

Project structure
|-3d_SLN
  |-data
    |-suncg_dataset.py
      # Actual definition for the dataset object, makes batches of scene graphs
  |-metadata
    # SUNCG meta data goes here
    |-30_size_info_many.json
      # data about object size/volume, for 30/70 cutoff
    |-data_rot_train.json
      # Normalized object positions & rotations for training
    |-data_rot_val.json
      # For testing
    |-size_info_many.json
      # data about object size/volume, different cutoff
    |-valid_types.json
      # What object types we should use for making the scene graph
      # Caution when editing this, quite a bit is hard coded elsewhere
  |-models
    |-diff_render.py
      # Uses the Neural Mesh Renderer (Pytorch Version) to refine object positions
    |-graph.py
      # Graph network building blocks
    |-misc.py
      # Misc helper functions for the diff renderer
    |-Sg2ScVAE_model.py
      # Code to construct the VAE-graph network
    |-SPADE_related.py
      # Tools to construct SPADE VAE GAN (inference only)
  |-options
    # Global options
  |-render
    # Contains various "profiles" for Blender rendering
  |-testing
    # You must call batch_gen in test.py at least once
    # It will call into get_layouts_from_network in test_VAE.py
    # this will compute the posterior mean & std and cache it
    |-test_acc_mean_std.py
      # Contains helper functions to measure acc/l1/std 
    |-test_heatmap.py
      # Contains the functions *produce_heatmap* and *plot_heatmap*
      # The first function takes as input a verbally defined scene graph
        # If not provided, it uses a default scene graph with 5 objects
        # It will load weights for a VAE-graph network
        # Then load the computed posterior mean & std
        # And repeatedly sample from the given scene graph
        # Saves the results to a .pkl file
      # The second function will load a .pkl and plot them as heatmaps
    |-test_plot2d.py
      # Contains a function that uses matplotlib
      # Does NOT require SUNCG
      # Plots the objects using colors provided by ScanNet
    |-test_plot3d.py
      # Calls into the blender code in the ../render folder
      # Requires the SUNCG meshes
      # Requires Blender 2.79
      # Either uses the CPU (Blender renderer)
      # Or uses the GPU (Cycles renderer)
      # Loads a HDR texture (from HDRI Haven) for background
    |-test_SPADE_shade.py
      # Loads semantic maps & depth map, and produces RGB images using SPADE
    |-test_utils.py
      # Contains helper functions for testing
        # Of interest is the *get_sg_from_words* function
    |-test_VAE.py
  |-build_dataset_model.py
     # Constructs dataset & dataloader objects
     # Also constructs the VAE-graph network
  |-test.py
     # Provides functions which performs the following:
       # generation of layouts from scene graphs under the *batch_gen* argument
       # measure the accuracy of l1 loss, accuracy, std under the *measure_acc_l1_std* argument
       # draw the topdown heatmaps of layouts with a single scene graph under the *heat_map* argument
       # plot the topdown boxes of layouts with under the *draw_2d* argument
       # plot the viewer centric layouts using suncg meshes under the *draw_3d* argument
       # perform SPADE based shading of semantic+depth maps under the *gan_shade* argument
  |-train.py
     # Contains the training loop for the VAE-graph network
  |-utils.py
     # Contains various helper functions for:
       # managing network losses
       # make scene graphs from bounding boxes
       # load/write jsons
       # misc other stuff
  • Training the VAE-graph network (limited to 1 GPU):
    python train.py

  • Testing the VAE-graph network:
    First run python test.py --batch_gen at least once. This computes and caches a posterior for future sampling using the training set. It also generates a bunch of layouts using the test set.

  • To generate a heatmap:
    python test.py --heat_map
    You can either define your own scene graph (see the produce_heatmap function in testing/test_heatmap.py), if you do not provide one it will use the default one. The function will convert scene graphs defined using words into a format usable by the network.

  • To compute STD/L1/Acc:
    python test.py --measure_acc_l1_std

  • To plot the scene from a top down view with ScanNet colors (doesn't requrie SUNCG):
    python test.py --draw_2d
    Please provide a (O+1 x 6) tensor of bounding boxes, and a (O+1,) tensor of rotations. The last object should be the bounding box of the room

  • To plot 3D
    python test.py --draw_3d
    This calls into test_plot3d.py, which in turn launched Blender, and executes render_caller.py, you can put in specific rooms by editing this file. The full rendering function is located in render_room_color.py.

  • To use a neural renderer to refine a room
    python test.py --fine_tune Please select the indexes of the room in test.py. This will call into test_render_refine.py which uses the differentiable renderer located in diff_render.py. Learning rate, and loss types/weightings can be set in test_render_refine.py.
    We set a manual seed for demonstration purposes, in practice please remove this.

  • To use SPADE to generate texture/shading/lighting for a room from semantic + depth
    python test.py --gan_shade This will first call into semantic_depth_caller.py to produce the semantic and depth maps, then use SPADE to generate RGB images.

Citation

If you find this repo useful for your research, please consider citing the paper

@inproceedings{luo2020end,
  title={End-to-End Optimization of Scene Layout},
  author={Luo, Andrew and Zhang, Zhoutong and Wu, Jiajun and Tenenbaum, Joshua B},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3754--3763},
  year={2020}
}
Owner
Andrew Luo
PhD student @ CMU
Andrew Luo
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022