We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Overview

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning

Update: The lastest code will be updated in this branch. Please switch to CORL2020 branch if you are looking for the Model-based Heuristic Deep RL approach.

Developed by Le Chen and Yunke Ao from Autonomous Systems Lab (ASL) at ETH Zurich.

1 Introduction

In this work we presents a novel formulation to learn a motion policy to be executed on a robot arm for automatic data collection for calibrating intrinsics and extrinsics jointly. Our approach models the calibration process compactly using model-free deep reinforcement learning to derive a policy that guides the motions of a robotic arm holding the sensor to efficiently collect measurements that can be used for both camera intrinsic calibration and camera-IMU extrinsic calibration. Given the current pose and collected measurements, the learned policy generates the subsequent transformation that optimizes sensor calibration accuracy. The evaluations in simulation and on a real robotic system show that our learned policy generates favorable motion trajectories and collects enough measurements efficiently that yield the desired intrinsics and extrinsics with short path lengths. In simulation we are able to perform calibrations $10\times$ faster than hand-crafted policies, which transfers to a real-world speed up of $3\times$ over a human expert.

2 Usage

Our code is tested on Ubuntu 18.04 LTS (Bionic Beaver) and ROS Melodic Morenia with GPU GTX 1660 Ti and CUDA 11.2.

2.1 Build Instructions

  • Install required dependencies:
sudo apt-get install build-essential software-properties-common
sudo apt-get install bc curl ca-certificates fakeroot gnupg2 libssl-dev lsb-release libelf-dev bison flex
sudo apt-get install ros-melodic-moveit, ros-melodic-moveit-visual-tools, ros-melodic-cmake-modules
sudo apt-get install ros-melodic-libfranka ros-melodic-franka-ros, ros-melodic-joint-trajectory-controller
sudo apt-get install ros-melodic-vision-opencv ros-melodic-image-transport-plugins
sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen
sudo apt-get install libopencv-dev libgtk-3-dev python-catkin-tools
sudo apt-get install python-matplotlib python-scipy python-git python-pip ipython
sudo apt-get install libtbb-dev libblas-dev liblapack-dev libv4l-dev, libpoco-dev

pip install opencv-python
pip install opencv-contrib-python
pip install --upgrade tensorflow
pip install python-igraph --upgrade
pip install pyyaml
pip install rospkg
pip install matplotlib
pip install pandas
pip install pytorch
pip install wandb
pip install PyKDL
pip install gym
  • Clone the repository and catkin build:
cd ~/catkin_ws
git clone https://github.com/clthegoat/Learn-to-Calibrate.git
cd Learn-to-Calibrate
git checkout master
cd ../
mv Learn-to-Calibrate src
catkin build
source ~/catkin_ws/devel/setup.bash

2.2 Configuration

  • Please change the file saving directory in franka_cal_sim_single/config/config.yaml before training or testing!

2.3 Running the code

2.3.1 Training:

  • In terminal 1:
source ~/catkin_ws/devel/setup.bash
roslaunch franka_cal_sim_single cam_imu_ext_che.launch
  • In terminal 2:
source ~/catkin_ws/devel/setup.bash
cd src/franka_cal_sim/python/algorithms
python RL_algo_sac_int_ext.py

2.3.2 Testing:

  • In terminal 1:
source ~/catkin_ws/devel/setup.bash
roslaunch franka_cal_sim_single cam_imu_ext_che.launch
  • In terminal 2:
source ~/catkin_ws/devel/setup.bash
cd src/franka_cal_sim/python/test_policies/
python RL_algo_sac_ext_int_test.py

3 Citing

Please cite the following paper when using our code for your research:

@article{chen2020learning,
  title={Learning Trajectories for Visual-Inertial System Calibration via Model-based Heuristic Deep Reinforcement Learning},
  author={Chen, Le and Ao, Yunke and Tschopp, Florian and Cramariuc, Andrei and Breyer, Michel and Chung, Jen Jen and Siegwart, Roland and Cadena, Cesar},
  journal={arXiv preprint arXiv:2011.02574},
  year={2020}
}

4 Code reference:

Our code is based on the following repositories:

Owner
ETHZ ASL
ETHZ ASL
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023