A ssl analyzer which could analyzer target domain's certificate.

Overview

ssl_analyzer

A ssl analyzer which could analyzer target domain's certificate.

Analyze the domain name ssl certificate information according to the input csv file (the csv file path can be entered in the configuration section), and write the detailed information into the mysql database. After the container starts, users can connect to mysql through the mysql client to view the analysis results (The startup demo video is shown below).

Get start

  1. git clone https://github.com/vincentbin/ssl_analyzer.git
  2. cd ssl_analyzer
  3. docker-compose up --build

Configurations (optional)

  • analyzer.conf
[script]
# Use multi-thread or not
multi_thread=True
# The number of threads used by the task
thread_num=20
# The location of hosts csv file
hosts_csv_filename=./data/top-1m.csv
# The amount of hosts user want to analyze (Set to 0 to analyze all csv content)
analyze_num=120000

Database connection info

  • username: root
  • password: 123456

Running process is shown in the video below.

running_process1.5x.mp4

Code structure

.
├── analysis
│   ├── analysis_data.sql       // SQL statement for data analysis
│   ├── analysis_data_v2.ipynb  // Statistical analysis of the result data collected by the system
├── data
│   ├── cacert.pem              // Root certificate information
│   ├── certificate_table.csv   // Database storage results csv export file
│   ├── top-1m.csv              // Input domain name file (this file can be customized to specify the domain names you want to analyze)
├── db
│   ├── certificateTable.sql    // MySQL table design SQL for storing certificate details
│   ├── creatDB.sql             // Mysql build database SQL for container init
│   ├── init.sql                // Mysql container initialization SQL
│   ├── utf8mb4.cnf             // Mysql configuration settings
│   ├── Dockerfile              // Mysql Dockerfile
├── conf_reader.py              // Get analyzer.conf file's configuration information
├── crl_checker.py              // CRL check related code
├── db.py                       // Database related operation code
├── ssl_analyzer.py             // Code related to requesting domain name acquisition and parsing certificate information
├── requirements.txt            // Project dependencies
├── Dockerfile                  // Python script container
├── docker-compose.yml          // Configuration file for starting db & script containers
├── Dockerfile                  // Python script container
├── LICENSE                     // LICENSE
├── README                      // README

Our Analysis

Use 20 threads to execute and analyze 120,000 domain name information in the top-1m file concurrently.

Result

http://nbviewer.org/github/vincentbin/ssl_analyzer/blob/main/analysis/analysis_data_v2.ipynb

Owner
vincent
Back-end developer & Coding lover
vincent
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022