Neural models of common sense. 🤖

Related tags

Deep Learningrainbow
Overview

Unicorn on Rainbow

Neural models of common sense.

This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a New Multitask Benchmark. Unicorn on Rainbow introduces a new evaluation, the cost equivalent curve, which compares models in terms of their cost-benefit trade offs. Using cost equivalent curves, we conduct a large-scale empirical study of intermediate-task transfer for common sense on a new benchmark collection of commonsense reasoning datasets, Rainbow. With findings from this study, we create a new state-of-the-art model for commonsense reasoning: Unicorn.

Jump to a section of the readme to accomplish different goals:

  • Rainbow: Read about and download data for Rainbow, our new commonsense reasoning benchmark.
  • Unicorn: Get up and running with Unicorn, our state-of-the-art commonsense reasoning model.
  • Cost Equivalent Curves: Learn how to generate cost equivalent curves for your own predictions.
  • Experimental Results: Download and analyze the results from our hundreds of experiments.
  • Setup: Get set up to run the code in this repository.
  • Quickstart: Run the code in this repo.
  • Citation: Cite the Unicorn on Rainbow paper.
  • Contact: Reach out with questions or comments.

Note: This repository is intended for research. There is no intention for ongoing maintenance.

Rainbow

Rainbow brings together six pre-existing commonsense reasoning benchmarks: aNLI, Cosmos QA, HellaSWAG, Physical IQa, Social IQa, and WinoGrande. These commonsense reasoning benchmarks span both social and physical common sense.

Note: Rainbow pins these datasets to specific versions. To make sure you're using the correct data, please download those versions below.

Getting the Data

Rainbow preprocesses all of the datasets into a text-to-text format for ease of modeling.

Alternatively, you can download the individual tasks and preprocess them yourself.

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

Submitting to the Leaderboard

If you develop a model for Rainbow, please feel free to submit to the leaderboard!

Unicorn

Unicorn (a UNIversal COmmonsense Reasoning Model) solves commonsense reasoning tasks in the text-to-text format. In principle, Unicorn may be trained on any NLP task, simply feed it text input and ask it to predict text output. Unicorn derives from T5, supercharging it for commonsense reasoning tasks and achieving state-of-the-art across a number of popular benchmarks, including Rainbow and CommonsenseQA.

To try Unicorn on your own data, first download the weights then fine-tune and evaluate it on your own data.

Downloading the Weights

To run Unicorn, you'll first need to download its weight files into a directory or path on Google Cloud. Using gsutil:

gsutil cp -r \
  gs://ai2-mosaic-public/projects/rainbow/v1.0/unicorns/lr-2e-3_batch-size-32
  $DST

Where $DST is the destination directory.

Reproducing our Results

In Unicorn on Rainbow, we trained different Unicorns that were first multitasked on Rainbow using different hyper-parameters. The checkpoint we've made available had the best performance most often. If you need the other checkpoints, please email the authors.

Cost Equivalent Curves

Cost equivalent curves compare the cost-benefit trade offs different techniques offer. In particular, cost equivalent curves plot the baseline and new technique's equivalent costs, or the costs where they achieve the same performance. For example, if the cost is measured as the number of examples and performance is measured by accuracy, then the cost equivalent curve shows how many examples the baseline needs to match the new technique's accuracy.

The plot_cost_equivalent_curves function in bin/create-multi-experiment-figures.py offers example code for how to create cost equivalent curves in Python.

Stay Tuned! We'll soon be releasing an easy-to-use, standalone package for creating cost equivalent curves. Check back here for it in the future.

Experimental Results

For Unicorn on Rainbow, we ran hundreds of experiments. We've made available the results from all those experiments in order to facilitate future research. For example, you may want those thousands of training curves to study hyper-parameter tuning or how loss evolves over training.

Among other things, you'll find:

  • predictions on dev from every checkpoint saved during training
  • training curves (training step vs. loss)
  • learning curves (dataset size vs. accuracy)
  • hyper-parameter tuning
  • all tables and figures from the paper
  • and more...

Our hope is that researchers can reuse this large collection of experiments to derive new practical and research insights.

Downloading the Results

Five collections of results are available:

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

NOTE: The learning curves experiments varied the number of training examples up to 16,000; however, CommonsenseQA has fewer than 16,000 training examples. Thus, for CommonsenseQA numbers higher than 9,741 are truncated to that size. This subtlety is taken care of by the data processing pipeline when the experiments are processed into the results tables, so it only affects rainbow-predictions.tar.gz and rainbow-experiments.tar.gz.

Replicating Our Analysis Pipeline

All the scripts to replicate our analysis pipeline reside in bin/. In order to run the scripts, you'll need to get set up for development.

The overall pipeline is as follows:

+----------------------------+
| rainbow-predictions.tar.gz |
+----------------------------+
              |
              | (bin/organize-experiments)
              V
+----------------------------+
| rainbow-experiments.tar.gz |
+----------------------------+
              |
              | (bin/generate-tables.py)
              V
  +------------------------+
  | rainbow-results.tar.gz |
  +------------------------+
         |         |
         |         | (bin/generate-latex-tables.py)
         |         V
         |     +-----------------------------+
         |     | rainbow-latex-tables.tar.gz |
         |     +-----------------------------+
         |
         | (bin/create-single-experiment-figures.py)
         | (bin/create-multi-experiment-figures.py)
         V
+------------------------+
| rainbow-figures.tar.gz |
+------------------------+

To run the pipeline, start by downloading rainbow-predictions.tar.gz (see Downloading the Results above).

Use bin/organize-experiments to produce rainbow-experiments.tar.gz:

$ tar -xf rainbow-predictions.tar.gz
$ bin/organize-experiments rainbow-predictions $DST

Where $DST is the desired destination directory (for example the current directory, .).

Use bin/generate-tables.py to produce rainbow-results.tar.gz:

$ bin/generate-tables.py rainbow-experiments rainbow-results

Use bin/create-single-experiment-figures.py and bin/create-multi-experiment-figures.py to create rainbow-figures.tar.gz:

$ bin/create-single-experiment-figures.py rainbow-results rainbow-figures/single-experiment
$ bin/create-multi-experiment-figures.py rainbow-results rainbow-figures/multi-experiment

And use bin/generate-latex-tables.py to produce rainbow-latex-tables.tar.gz:

$ bin/generate-latex-tables.py rainbow-results rainbow-latex-tables

All scripts except bin/organize-experiments are also self-documenting, so pass --help to any of them for more information.

Setup

This project requires Python 3.6 or above.

First, install the project's dependencies:

./bin/install

Next, make sure you have the following environment variables set:

  1. RAINBOW_DATASETS_DIR: The directory for storing all relevant datasets.
  2. RAINBOW_PREPROCESSED_DATASETS_DIR: The directory for storing the preprocessed dataset split files.
  3. RAINBOW_TFDS_DATASETS_DIR: The directory for storing the TFDS (tensorflow datasets) datasets.

Training requires TPUs. For training, all directories should point to Google Cloud Storage prefixes. Additionally, you'll need the following environment variables:

  1. PROJECT: Your Google Cloud project's ID.
  2. ZONE: Your Google Cloud virtual machine's zone.
  3. TPU_NAME: Your TPU's name.
  4. TPU_TOPOLOGY: Your TPU's topology.

Then, download and prepare all the datasets for text-to-text modeling:

$ ./bin/prepare.py --help
Usage: prepare.py [OPTIONS]

  Prepare all relevant datasets for text-to-text modeling.

  Download to and read the datasets from --src, transform them into CSVs
  suitable for text-to-text models, then write the results to --dst. Google
  storage paths are supported.

Options:
  --src TEXT        The directory to which to download all the relevant
                    datasets. Defaults to the RAINBOW_DATASETS_DIR environment
                    variable.  [required]
  --dst TEXT        The directory to which to write the preprocessed dataset
                    files. Defaults to the RAINBOW_PREPROCESSED_DATASETS_DIR
                    environment variable.  [required]
  --force-download  Force downloads of all the datasets, otherwise only
                    missing datasets will be downloaded.
  --help            Show this message and exit.

Finally, verify your installation:

./bin/verify

Quickstart

Before following this section, make sure you've done the Setup.

Fine-tuning

To fine-tune the model, use bin/fine-tune.py:

$ ./bin/fine-tune.py --help
Usage: fine-tune.py [OPTIONS] MIXTURE RESULTS_DIR

  Fine-tune the model on MIXTURE, writing results to RESULTS_DIR.

Options:
  --pretrained-model TEXT         The path to or name of the pretrained model.
                                  Defaults to 3B.
  --n-steps INTEGER               The number of gradient updates. Defaults to
                                  25,000.
  --learning-rate FLOAT           The learning rate to use for training.
                                  Defaults to 3e-3.
  --batch-size INTEGER            The batch size to use for training. For
                                  efficient training on the TPU, choose a
                                  multiple of either 8 or 128. Defaults to 16.
  --model-parallelism INTEGER     The degree of model parallelism to use.
                                  Defaults to 8.
  --save-checkpoints-steps INTEGER
                                  The number of steps to take before saving a
                                  checkpoint. Defaults to 5000.
  --n-checkpoints-to-keep INTEGER
                                  The number of checkpoints to keep during
                                  fine-tuning. Defaults to 4.
  --tpu-name TEXT                 The name of the TPU. Defaults to the
                                  TPU_NAME environment variable.  [required]
  --tpu-topology TEXT             The topology of the TPU. Defaults to the
                                  TPU_TOPOLOGY environment variable.
                                  [required]
  --help                          Show this message and exit.

Evaluation

To evaluate the model, use bin/evaluate.py:

$ ./bin/evaluate.py --help
Usage: evaluate.py [OPTIONS] MIXTURE RESULTS_DIR

  Evaluate the model located at RESULTS_DIR on MIXTURE.

Options:
  --batch-size INTEGER         The batch size to use for prediction. For
                               efficient prediction on the TPU, choose a
                               multiple of either 8 or 128. Defaults to 64.
  --model-parallelism INTEGER  The degree of model parallelism to use.
                               Defaults to 8.
  --tpu-name TEXT              The name of the TPU. Defaults to the TPU_NAME
                               environment variable.  [required]
  --tpu-topology TEXT          The topology of the TPU. Defaults to the
                               TPU_TOPOLOGY environment variable.  [required]
  --help                       Show this message and exit.

Tests and Code Quality

The code is formatted with black. You can run the formatter using the bin/format script:

$ ./bin/format

To run code quality checks, use the bin/verify script:

$ ./bin/verify

For fine-grained control of which tests to run, use pytest directly:

$ pytest

You can also skip slower tests by passing the --skip-slow (-s) flag:

$ pytest --skip-slow

Citation

Unicorn on Rainbow is a AAAI 2021 paper. Please check back here soon for the bibtex citation.

Contact

For public, non-sensitive questions and concerns, please file an issue on this repository.

For private or sensitive inquiries email mosaic on the allenai.org website.

implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022