Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Related tags

Deep LearningCAP
Overview

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

This is the official repository for Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning. We provide the commands to run the PETS and PlaNet experiments included in the paper. This repository is made minimal for ease of experimentation.

Installations

This repository requires Python (3.6), Pytorch (version 1.3 or above) run the following command to create a conda environment (tested using CUDA10.2):

conda env create -f environment.yml

Experiments

To run the PETS experiments on the HalfCheetah environment used in our ablation study, run:

cd cap-pets

CAP

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--cost_constrained --penalize_uncertainty --learn_kappa --seed 1

CAP with fixed kappa

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--cost_constrained --penalize_uncertainty --kappa 1.0 --seed 1

CCEM

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--cost_constrained --seed 1

CEM

python cap-pets/run_cap_pets.py --algo cem --env HalfCheetah-v3 --cost_lim 152 \
--seed 1

The commands for the PlaNet experiment on the CarRacing environment are:

CAP

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--cost-constrained --penalize-uncertainty \
--learn-kappa --penalty-kappa 0.1 \
--id CarRacing-cap --seed 1

CAP with fixed kappa

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--cost-constrained --penalize-uncertainty \
--penalty-kappa 1.0 \
--id CarRacing-kappa1 --seed 1

CCEM

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--cost-constrained \
--id CarRacing-ccem --seed 1

CEM

python cap-planet/run_cap_planet.py --env CarRacingSkiddingConstrained-v0 \
--cost-limit 0 --binary-cost \
--id CarRacing-cem --seed 1

Contact

If you have any questions regarding the code or paper, feel free to contact [email protected] or open an issue on this repository.

Acknowledgement

This repository contains code adapted from the following repositories: PETS and PlaNet. We thank the authors and contributors for open-sourcing their code.

Owner
Undergraduate student at University of Melbourne, interested in Machine Learning
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022