A3C LSTM Atari with Pytorch plus A3G design

Overview

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!!

RL A3C Pytorch

A3C LSTM playing Breakout-v0 A3C LSTM playing SpaceInvadersDeterministic-v3 A3C LSTM playing MsPacman-v0 A3C LSTM playing BeamRider-v0 A3C LSTM playing Seaquest-v0

NEWLY ADDED A3G!!

New implementation of A3C that utilizes GPU for speed increase in training. Which we can call A3G. A3G as opposed to other versions that try to utilize GPU with A3C algorithm, with A3G each agent has its own network maintained on GPU but shared model is on CPU and agent models are quickly converted to CPU to update shared model which allows updates to be frequent and fast by utilizing Hogwild Training and make updates to shared model asynchronously and without locks. This new method greatly increase training speed and models that use to take days to train can be trained in as fast as 10minutes for some Atari games! 10-15minutes for Breakout to start to score over 400! And 10mins to solve Pong!

This repository includes my implementation with reinforcement learning using Asynchronous Advantage Actor-Critic (A3C) in Pytorch an algorithm from Google Deep Mind's paper "Asynchronous Methods for Deep Reinforcement Learning."

See a3c_continuous a newly added repo of my A3C LSTM implementation for continuous action spaces which was able to solve BipedWalkerHardcore-v2 environment (average 300+ for 100 consecutive episodes)

A3C LSTM

I implemented an A3C LSTM model and trained it in the atari 2600 environments provided in the Openai Gym. So far model currently has shown the best prerfomance I have seen for atari game environments. Included in repo are trained models for SpaceInvaders-v0, MsPacman-v0, Breakout-v0, BeamRider-v0, Pong-v0, Seaquest-v0 and Asteroids-v0 which have had very good performance and currently hold the best scores on openai gym leaderboard for each of those games(No plans on training model for any more atari games right now...). Saved models in trained_models folder. *Removed trained models to reduce the size of repo

Have optimizers using shared statistics for RMSProp and Adam available for use in training as well option to use non shared optimizer.

Gym atari settings are more difficult to train than traditional ALE atari settings as Gym uses stochastic frame skipping and has higher number of discrete actions. Such as Breakout-v0 has 6 discrete actions in Gym but ALE is set to only 4 discrete actions. Also in GYM atari they randomly repeat the previous action with probability 0.25 and there is time/step limit that limits performance.

link to the Gym environment evaluations below

Tables Best 100 episode Avg Best Score
SpaceInvaders-v0 5808.45 ± 337.28 13380.0
SpaceInvaders-v3 6944.85 ± 409.60 20440.0
SpaceInvadersDeterministic-v3 79060.10 ± 5826.59 167330.0
Breakout-v0 739.30 ± 18.43 864.0
Breakout-v3 859.57 ± 1.97 864.0
Pong-v0 20.96 ± 0.02 21.0
PongDeterministic-v3 21.00 ± 0.00 21.0
BeamRider-v0 8441.22 ± 221.24 13130.0
MsPacman-v0 6323.01 ± 116.91 10181.0
Seaquest-v0 54203.50 ± 1509.85 88840.0

The 167,330 Space Invaders score is World Record Space Invaders score and game ended only due to GYM timestep limit and not from loss of life. When I increased the GYM timestep limit to a million its reached a score on Space Invaders of approximately 2,300,000 and still ended due to timestep limit. Most likely due to game getting fairly redundent after a while

Due to gym version Seaquest-v0 timestep limit agent scores lower but on Seaquest-v4 with higher timestep limit agent beats game (see gif above) with max possible score 999,999!!

Requirements

  • Python 2.7+
  • Openai Gym and Universe
  • Pytorch

Training

When training model it is important to limit number of worker processes to number of cpu cores available as too many processes (e.g. more than one process per cpu core available) will actually be detrimental in training speed and effectiveness

To train agent in Pong-v0 environment with 32 different worker processes:

python main.py --env Pong-v0 --workers 32

#A3C-GPU training using machine with 4 V100 GPUs and 20core CPU for PongDeterministic-v4 took 10 minutes to converge

To train agent in PongDeterministic-v4 environment with 32 different worker processes on 4 GPUs with new A3G:

python main.py --env PongDeterministic-v4 --workers 32 --gpu-ids 0 1 2 3 --amsgrad True

Hit Ctrl C to end training session properly

A3C LSTM playing Pong-v0

Evaluation

To run a 100 episode gym evaluation with trained model

python gym_eval.py --env Pong-v0 --num-episodes 100

Notice BeamRiderNoFrameskip-v4 reaches scores over 50,000 in less than 2hrs of training compared to the gym v0 version this shows the difficulty of those versions but also the timelimit being a major factor in score level

These training charts were done on a DGX Station using 4GPUs and 20core Cpu. I used 36 worker agents and a tau of 0.92 which is the lambda in Generalized Advantage Estimation equation to introduce more variance due to the more deterministic nature of using just a 4 frame skip environment and a 0-30 NoOp start BeamRider Training Boxing training Pong Training SpaceInvaders Training Qbert training

Project Reference

Owner
David Griffis
David Griffis
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022