A3C LSTM Atari with Pytorch plus A3G design

Overview

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!!

RL A3C Pytorch

A3C LSTM playing Breakout-v0 A3C LSTM playing SpaceInvadersDeterministic-v3 A3C LSTM playing MsPacman-v0 A3C LSTM playing BeamRider-v0 A3C LSTM playing Seaquest-v0

NEWLY ADDED A3G!!

New implementation of A3C that utilizes GPU for speed increase in training. Which we can call A3G. A3G as opposed to other versions that try to utilize GPU with A3C algorithm, with A3G each agent has its own network maintained on GPU but shared model is on CPU and agent models are quickly converted to CPU to update shared model which allows updates to be frequent and fast by utilizing Hogwild Training and make updates to shared model asynchronously and without locks. This new method greatly increase training speed and models that use to take days to train can be trained in as fast as 10minutes for some Atari games! 10-15minutes for Breakout to start to score over 400! And 10mins to solve Pong!

This repository includes my implementation with reinforcement learning using Asynchronous Advantage Actor-Critic (A3C) in Pytorch an algorithm from Google Deep Mind's paper "Asynchronous Methods for Deep Reinforcement Learning."

See a3c_continuous a newly added repo of my A3C LSTM implementation for continuous action spaces which was able to solve BipedWalkerHardcore-v2 environment (average 300+ for 100 consecutive episodes)

A3C LSTM

I implemented an A3C LSTM model and trained it in the atari 2600 environments provided in the Openai Gym. So far model currently has shown the best prerfomance I have seen for atari game environments. Included in repo are trained models for SpaceInvaders-v0, MsPacman-v0, Breakout-v0, BeamRider-v0, Pong-v0, Seaquest-v0 and Asteroids-v0 which have had very good performance and currently hold the best scores on openai gym leaderboard for each of those games(No plans on training model for any more atari games right now...). Saved models in trained_models folder. *Removed trained models to reduce the size of repo

Have optimizers using shared statistics for RMSProp and Adam available for use in training as well option to use non shared optimizer.

Gym atari settings are more difficult to train than traditional ALE atari settings as Gym uses stochastic frame skipping and has higher number of discrete actions. Such as Breakout-v0 has 6 discrete actions in Gym but ALE is set to only 4 discrete actions. Also in GYM atari they randomly repeat the previous action with probability 0.25 and there is time/step limit that limits performance.

link to the Gym environment evaluations below

Tables Best 100 episode Avg Best Score
SpaceInvaders-v0 5808.45 ± 337.28 13380.0
SpaceInvaders-v3 6944.85 ± 409.60 20440.0
SpaceInvadersDeterministic-v3 79060.10 ± 5826.59 167330.0
Breakout-v0 739.30 ± 18.43 864.0
Breakout-v3 859.57 ± 1.97 864.0
Pong-v0 20.96 ± 0.02 21.0
PongDeterministic-v3 21.00 ± 0.00 21.0
BeamRider-v0 8441.22 ± 221.24 13130.0
MsPacman-v0 6323.01 ± 116.91 10181.0
Seaquest-v0 54203.50 ± 1509.85 88840.0

The 167,330 Space Invaders score is World Record Space Invaders score and game ended only due to GYM timestep limit and not from loss of life. When I increased the GYM timestep limit to a million its reached a score on Space Invaders of approximately 2,300,000 and still ended due to timestep limit. Most likely due to game getting fairly redundent after a while

Due to gym version Seaquest-v0 timestep limit agent scores lower but on Seaquest-v4 with higher timestep limit agent beats game (see gif above) with max possible score 999,999!!

Requirements

  • Python 2.7+
  • Openai Gym and Universe
  • Pytorch

Training

When training model it is important to limit number of worker processes to number of cpu cores available as too many processes (e.g. more than one process per cpu core available) will actually be detrimental in training speed and effectiveness

To train agent in Pong-v0 environment with 32 different worker processes:

python main.py --env Pong-v0 --workers 32

#A3C-GPU training using machine with 4 V100 GPUs and 20core CPU for PongDeterministic-v4 took 10 minutes to converge

To train agent in PongDeterministic-v4 environment with 32 different worker processes on 4 GPUs with new A3G:

python main.py --env PongDeterministic-v4 --workers 32 --gpu-ids 0 1 2 3 --amsgrad True

Hit Ctrl C to end training session properly

A3C LSTM playing Pong-v0

Evaluation

To run a 100 episode gym evaluation with trained model

python gym_eval.py --env Pong-v0 --num-episodes 100

Notice BeamRiderNoFrameskip-v4 reaches scores over 50,000 in less than 2hrs of training compared to the gym v0 version this shows the difficulty of those versions but also the timelimit being a major factor in score level

These training charts were done on a DGX Station using 4GPUs and 20core Cpu. I used 36 worker agents and a tau of 0.92 which is the lambda in Generalized Advantage Estimation equation to introduce more variance due to the more deterministic nature of using just a 4 frame skip environment and a 0-30 NoOp start BeamRider Training Boxing training Pong Training SpaceInvaders Training Qbert training

Project Reference

Owner
David Griffis
David Griffis
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023