GRF: Learning a General Radiance Field for 3D Representation and Rendering

Related tags

Deep LearningGRF
Overview

GRF: Learning a General Radiance Field for 3D Representation and Rendering

[Paper] [Video]

GRF: Learning a General Radiance Field for 3D Representation and Rendering
Alex Trevithick1,2 and Bo Yang2,3
1Williams College, 2University of Oxford, 3The Hong Kong Polytechnic University in ICCV 2021

This is the codebase which is currently a work in progress.

Overview of GRF

GRF is a powerful implicit neural function that can represent and render arbitrarily complex 3D scenes in a single network only from 2D observations. GRF takes a set of posed 2D images as input, constructs an internal representation for each 3D point of the scene, and renders the corresponding appearance and geometry of any 3D point viewing from an arbitrary angle. The key to our approach is to explicitly integrate the principle of multi-view geometry to obtain features representative of an entire ray from a given viewpoint. Thus, in a single forward pass to render a scene from a novel view, GRF takes some views of that scene as input, computes per-pixel pose-aware features for each ray from the given viewpoints through the image plane at that pixel, and then uses those features to predict the volumetric density and rgb values of points in 3D space. Volumetric rendering is then applied.

Setting Up the Environment

Use conda to setup an environment as follows:

conda env create -f environment.yml
conda activate grf

Data

  • SRN cars and chairs datasets can be downloaded from the paper's drive link
  • NeRF-Synthetic and LLFF datasets can be downloaded from the NeRF drive link
  • MultiShapenet dataset can be downloaded from the DISN drive link

Training and Rendering from the Model

To train and render from the model, use the run.py script

python run.py --data_root [path to directory with dataset] ] \
    --expname [experiment name]
    --basedir [where to store ckpts and logs]
    --datadir [input data directory]
    --netdepth [layers in network]
    --netwidth [channels per layer]
    --netdepth_fine [layers in fine network]
    --netwidth_fine [channels per layer in fine network]
    --N_rand [batch size (number of random rays per gradient step)]
    --lrate [learning rate]
    --lrate_decay [exponential learning rate decay (in 1000s)]
    --chunk [number of rays processed in parallel, decrease if running out of memory]
    --netchunk [number of pts sent through network in parallel, decrease if running out of memory]
    --no_batching [only take random rays from 1 image at a time]
    --no_reload [do not reload weights from saved ckpt]
    --ft_path [specific weights npy file to reload for coarse network]
    --random_seed [fix random seed for repeatability]
    --precrop_iters [number of steps to train on central crops]
    --precrop_frac [fraction of img taken for central crops]
    --N_samples [number of coarse samples per ray]
    --N_importance [number of additional fine samples per ray]
    --perturb [set to 0. for no jitter, 1. for jitter]
    --use_viewdirs [use full 5D input instead of 3D]
    --i_embed [set 0 for default positional encoding, -1 for none]
    --multires [log2 of max freq for positional encoding (3D location)]
    --multires_views [log2 of max freq for positional encoding (2D direction)]
    --raw_noise_std [std dev of noise added to regularize sigma_a output, 1e0 recommended]
    --render_only [do not optimize, reload weights and render out render_poses path]
    --dataset_type [options: llff / blender / shapenet / multishapenet]
    --testskip [will load 1/N images from test/val sets, useful for large datasets like deepvoxels]
    --white_bkgd [set to render synthetic data on a white bkgd (always use for dvoxels)]
    --half_res [load blender synthetic data at 400x400 instead of 800x800]
    --no_ndc [do not use normalized device coordinates (set for non-forward facing scenes)]
    --lindisp [sampling linearly in disparity rather than depth]
    --spherify [set for spherical 360 scenes]
    --llffhold [will take every 1/N images as LLFF test set, paper uses 8]
    --i_print [frequency of console printout and metric loggin]
    --i_img [frequency of tensorboard image logging]
    --i_weights [frequency of weight ckpt saving]
    --i_testset [frequency of testset saving]
    --i_video [frequency of render_poses video saving]
    --attention_direction_multires [frequency of embedding for value]
    --attention_view_multires [frequency of embedding for direction]
    --training_recon [whether to render images from the test set or not during final evaluation]
    --use_quaternion [append input pose as quaternion to input to unet]
    --no_globl [don't use global vector in middle of unet]
    --no_render_pose [append render pose to input to unet]
    --use_attsets [use attsets, otherwise use slot attention]

In particular, note that to render and test from a trained model, set render_only to True in the config.

Configs

The current configs are for the blender, LLFF, and shapenet datasets, which can be found in configs.

After setting the parameters of the model, to run it,

python run.py --configs/config_DATATYPE

Practical Concerns

The models were tested on 32gb GPUs, and higher resolution images require very large amounts of memory. The shapenet experiments should run on 16gb GPUs.

Acknowledgements

The code is built upon the original NeRF implementation. Thanks to LucidRains for the torch implementation of slot attention on which the current version is based.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{grf2020,
  title={GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering},
  author={Trevithick, Alex and Yang, Bo},
  booktitle={arXiv:2010.04595},
  year={2020}
}
Owner
Alex Trevithick
ML + CV👍
Alex Trevithick
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022