[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

Overview

On Sampling Collaborative Filtering Datasets

This repository contains the implementation of many popular sampling strategies, along with various explicit/implicit/sequential feedback recommendation algorithms. The code accompanies the paper "On Sampling Collaborative Filtering Datasets" [ACM] [Public PDF] where we compare the utility of different sampling strategies for preserving the performance of various recommendation algorithms.

We also provide code for Data-Genie which can automatically predict the performance of how good any sampling strategy will be for a given collaborative filtering dataset. We refer the reader to the full paper for more details. Kindly send me an email if you're interested in obtaining access to the pre-trained weights of Data-Genie.

If you find any module of this repository helpful for your own research, please consider citing the below WSDM'22 paper. Thanks!

@inproceedings{sampling_cf,
  author = {Noveen Sachdeva and Carole-Jean Wu and Julian McAuley},
  title = {On Sampling Collaborative Filtering Datasets},
  url = {https://doi.org/10.1145/3488560.3498439},
  booktitle = {Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining},
  series = {WSDM '22},
  year = {2022}
}

Code Author: Noveen Sachdeva ([email protected])


Setup

Environment Setup
$ pip install -r requirements.txt
Data Setup

Once you've correctly setup the python environments and downloaded the dataset of your choice (Amazon: http://jmcauley.ucsd.edu/data/amazon/), the following steps need to be run:

The following command will create the required data/experiment directories as well as download & preprocess the Amazon magazine and the MovieLens-100K datasets. Feel free to download more datasets from the following web-page http://jmcauley.ucsd.edu/data/amazon/ and adjust the setup.sh and preprocess.py files accordingly.

$ ./setup.sh

How to train a model on a sampled/complete CF-dataset?

  • Edit the hyper_params.py file which lists all config parameters, including what type of model to run. Currently supported models:
Sampling Strategy What is sampled? Paper Link
Random Interactions
Stratified Interactions
Temporal Interactions
SVP-CF w/ MF Interactions LINK & LINK
SVP-CF w/ Bias-only Interactions LINK & LINK
SVP-CF-Prop w/ MF Interactions LINK & LINK
SVP-CF-Prop w/ Bias-only Interactions LINK & LINK
Random Users
Head Users
SVP-CF w/ MF Users LINK & LINK
SVP-CF w/ Bias-only Users LINK & LINK
SVP-CF-Prop w/ MF Users LINK & LINK
SVP-CF-Prop w/ Bias-only Users LINK & LINK
Centrality Graph LINK
Random-Walk Graph LINK
Forest-Fire Graph LINK
  • Finally, type the following command to run:
$ CUDA_VISIBLE_DEVICES=<SOME_GPU_ID> python main.py
  • Alternatively, to train various possible recommendation algorithm on various CF datasets/subsets, please edit the configuration in grid_search.py and then run:
$ python grid_search.py

How to train Data-Genie?

  • Edit the data_genie/data_genie_config.py file which lists all config parameters, including what datasets/CF-scenarios/samplers etc. to train Data-Genie on

  • Finally, use the following command to train Data-Genie:

$ python data_genie.py

License


MIT

Owner
Noveen Sachdeva
CS PhD Student | Machine Learning Researcher
Noveen Sachdeva
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022