[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

Overview

On Sampling Collaborative Filtering Datasets

This repository contains the implementation of many popular sampling strategies, along with various explicit/implicit/sequential feedback recommendation algorithms. The code accompanies the paper "On Sampling Collaborative Filtering Datasets" [ACM] [Public PDF] where we compare the utility of different sampling strategies for preserving the performance of various recommendation algorithms.

We also provide code for Data-Genie which can automatically predict the performance of how good any sampling strategy will be for a given collaborative filtering dataset. We refer the reader to the full paper for more details. Kindly send me an email if you're interested in obtaining access to the pre-trained weights of Data-Genie.

If you find any module of this repository helpful for your own research, please consider citing the below WSDM'22 paper. Thanks!

@inproceedings{sampling_cf,
  author = {Noveen Sachdeva and Carole-Jean Wu and Julian McAuley},
  title = {On Sampling Collaborative Filtering Datasets},
  url = {https://doi.org/10.1145/3488560.3498439},
  booktitle = {Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining},
  series = {WSDM '22},
  year = {2022}
}

Code Author: Noveen Sachdeva ([email protected])


Setup

Environment Setup
$ pip install -r requirements.txt
Data Setup

Once you've correctly setup the python environments and downloaded the dataset of your choice (Amazon: http://jmcauley.ucsd.edu/data/amazon/), the following steps need to be run:

The following command will create the required data/experiment directories as well as download & preprocess the Amazon magazine and the MovieLens-100K datasets. Feel free to download more datasets from the following web-page http://jmcauley.ucsd.edu/data/amazon/ and adjust the setup.sh and preprocess.py files accordingly.

$ ./setup.sh

How to train a model on a sampled/complete CF-dataset?

  • Edit the hyper_params.py file which lists all config parameters, including what type of model to run. Currently supported models:
Sampling Strategy What is sampled? Paper Link
Random Interactions
Stratified Interactions
Temporal Interactions
SVP-CF w/ MF Interactions LINK & LINK
SVP-CF w/ Bias-only Interactions LINK & LINK
SVP-CF-Prop w/ MF Interactions LINK & LINK
SVP-CF-Prop w/ Bias-only Interactions LINK & LINK
Random Users
Head Users
SVP-CF w/ MF Users LINK & LINK
SVP-CF w/ Bias-only Users LINK & LINK
SVP-CF-Prop w/ MF Users LINK & LINK
SVP-CF-Prop w/ Bias-only Users LINK & LINK
Centrality Graph LINK
Random-Walk Graph LINK
Forest-Fire Graph LINK
  • Finally, type the following command to run:
$ CUDA_VISIBLE_DEVICES=<SOME_GPU_ID> python main.py
  • Alternatively, to train various possible recommendation algorithm on various CF datasets/subsets, please edit the configuration in grid_search.py and then run:
$ python grid_search.py

How to train Data-Genie?

  • Edit the data_genie/data_genie_config.py file which lists all config parameters, including what datasets/CF-scenarios/samplers etc. to train Data-Genie on

  • Finally, use the following command to train Data-Genie:

$ python data_genie.py

License


MIT

Owner
Noveen Sachdeva
CS PhD Student | Machine Learning Researcher
Noveen Sachdeva
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022