Pyramid addon for OpenAPI3 validation of requests and responses.

Overview

Validate Pyramid views against an OpenAPI 3.0 document

CircleCI for pyramid_openapi3 (master branch) Test coverage (master branch) Test coverage (master branch) latest version of pyramid_openapi3 on PyPI Supported Python versions License: MIT Built by these great folks! Talk to us in #pyramid on Freenode IRC

Peace of Mind

The reason this package exists is to give you peace of mind when providing a RESTful API. Instead of chasing down preventable bugs and saying sorry to consumers, you can focus on more important things in life.

  • Your API documentation is never out-of-date, since it is generated out of the API document that you write.
  • The documentation comes with try-it-out examples for every endpoint in your API. You don't have to provide (and maintain) curl commands to showcase how your API works. Users can try it themselves, right in their browsers.
  • Your API document is always valid, since your Pyramid app won't even start if the document does not comply with the OpenAPI 3.0 specification.
  • Automatic request payload validation and sanitization. Your views do not require any code for validation and input sanitation. Your view code only deals with business logic. Tons of tests never need to be written since every request, and its payload, is validated against your API document before it reaches your view code.
  • Your API responses always match your API document. Every response from your view is validated against your document and a 500 Internal Server Error is returned if the response does not exactly match what your document says the output of a certain API endpoint should be. This decreases the effects of Hyrum's Law.
  • A single source of truth. Because of the checks outlined above, you can be sure that whatever your API document says is in fact what is going on in reality. You have a single source of truth to consult when asking an API related question, such as "Remind me again, which fields are returned by the endpoint /user/info?".
  • Based on Pyramid, a mature Python Web framework. Companies such as Mozilla, Yelp, RollBar and SurveyMonkey trust Pyramid, and the new pypi.org runs on Pyramid, too. Pyramid is thoroughly tested and documented, providing flexibility, performance, and a large ecosystem of high-quality add-ons.

Building Robust APIs

Features

Getting started

  1. Declare pyramid_openapi3 as a dependency in your Pyramid project.

  2. Include the following lines:

config.include("pyramid_openapi3")
config.pyramid_openapi3_spec('openapi.yaml', route='/api/v1/openapi.yaml')
config.pyramid_openapi3_add_explorer(route='/api/v1/')
  1. Use the openapi view predicate to enable request/response validation:
@view_config(route_name="foobar", openapi=True, renderer='json')
def myview(request):
    return request.openapi_validated.parameters

For requests, request.openapi_validated is available with two fields: parameters and body. For responses, if the payload does not match the API document, an exception is raised.

Advanced configuration

Relative File References in Spec

A feature introduced in OpenAPI3 is the ability to use $ref links to external files (https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#referenceObject).

To use this, you must ensure that you have all of your spec files in a given directory (ensure that you do not have any code in this directory as all the files in it are exposed as static files), then replace the pyramid_openapi3_spec call that you did in Getting Started with the following:

config.pyramid_openapi3_spec_directory('path/to/openapi.yaml', route='/api/v1/spec')

Some notes:

  • Do not set the route of your pyramid_openapi3_spec_directory to the same value as the route of pyramid_openapi3_add_explorer.
  • The route that you set for pyramid_openapi3_spec_directory should not contain any file extensions, as this becomes the root for all of the files in your specified filepath.
  • You cannot use pyramid_openapi3_spec_directory and pyramid_openapi3_spec in the same app.

Endpoints / Request / Response Validation

Provided with pyramid_openapi3 are a few validation features:

  • incoming request validation (i.e., what a client sends to your app)
  • outgoing response validation (i.e., what your app sends to a client)
  • endpoint validation (i.e., your app registers routes for all defined API endpoints)

These features are enabled as a default, but you can disable them if you need to:

config.registry.settings["pyramid_openapi3.enable_endpoint_validation"] = False
config.registry.settings["pyramid_openapi3.enable_request_validation"] = False
config.registry.settings["pyramid_openapi3.enable_response_validation"] = False

Warning: Disabling request validation will result in request.openapi_validated no longer being available to use.

Register Pyramid's Routes

You can register routes in your pyramid application. First, write the x-pyramid-route-name extension in the PathItem of the OpenAPI schema.

paths:
  /foo:
    x-pyramid-route-name: foo_route
    get:
      responses:
        200:
          description: GET foo

Then put the config directive pyramid_openapi3_register_routes in the app_factory of your application.

config.pyramid_openapi3_register_routes()

This means is equals to

config.add_route("foo_route", pattern="/foo")

Demo / Examples

There are three examples provided with this package:

Both examples come with tests that exhibit pyramid_openapi's error handling and validation capabilities.

A fully built-out app, with 100% test coverage, providing a RealWorld.io API is available at niteoweb/pyramid-realworld-example-app. It is a Heroku-deployable Pyramid app that provides an API for a Medium.com-like social app. You are encouraged to use it as a scaffold for your next project.

Design defense

The authors of pyramid_openapi3 believe that the approach of validating a manually-written API document is superior to the approach of generating the API document from Python code. Here are the reasons:

  1. Both generation and validation against a document are lossy processes. The underlying libraries running the generation/validation will always have something missing. Either a feature from the latest OpenAPI specification, or an implementation bug. Having to fork the underlying library in order to generate the part of your API document that might only be needed for the frontend is unfortunate.

    Validation on the other hand allows one to skip parts of validation that are not supported yet, and not block a team from shipping the document.

  2. The validation approach does sacrifice DRY-ness, and one has to write the API document and then the (view) code in Pyramid. It feels a bit redundant at first. However, this provides a clear separation between the intent and the implementation.

  3. The generation approach has the drawback of having to write Python code even for parts of the API document that the Pyramid backend does not handle, as it might be handled by a different system, or be specific only to documentation or only to the client side of the API. This bloats your Pyramid codebase with code that does not belong there.

Running tests

You need to have pipenv and Python 3.7, 3.8, or 3.9 installed on your machine. Then you can run:

$ make tests

Related packages

These packages tackle the same problem-space:

  • pyramid_oas3 seems to do things very similarly to pyramid_openapi3, but the documentation is not in English and we sadly can't fully understand what it does by just reading the code.
  • pyramid_swagger does a similar thing, but for Swagger 2.0 documents.
  • connexion takes the same "write spec first, code second" approach as pyramid_openapi3, but is based on Flask.
  • bottle-swagger takes the same "write spec first, code second" approach too, but is based on Bottle.
  • pyramid_apispec uses generation with help of apispec and the marshmallow validation library. See above why we prefer validation instead of generation.

Deprecation policy

We do our best to follow the rules below.

  • Support the latest few releases of Python, currently Python 3.7, 3.8, and 3.9.
  • Support the latest few releases of Pyramid, currently 1.10.7 through 2.0.
  • Support the latest few releases of openapi-core, currently 0.13.4 through 0.13.8.
  • See Pipfile.lock for a frozen-in-time known-good-set of all dependencies.

Use in the wild

A couple of projects that use pyramid_openapi3 in production:

Owner
Pylons Project
The Pylons Project is composed of a disparate group of project leaders with experience going back to the very start of Python web frameworks.
Pylons Project
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023