[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Overview

Transform and Tell: Entity-Aware News Image Captioning

Teaser

This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and Tell: Entity-Aware News Image Captioning. We propose an end-to-end model which generates captions for images embedded in news articles. News images present two key challenges: they rely on real-world knowledge, especially about named entities; and they typically have linguistically rich captions that include uncommon words. We address the first challenge by associating words in the caption with faces and objects in the image, via a multi-modal, multi-head attention mechanism. We tackle the second challenge with a state-of-the-art transformer language model that uses byte-pair-encoding to generate captions as a sequence of word parts.

On the GoodNews dataset, our model outperforms the previous state of the art by a factor of four in CIDEr score (13 to 54). This performance gain comes from a unique combination of language models, word representation, image embeddings, face embeddings, object embeddings, and improvements in neural network design. We also introduce the NYTimes800k dataset which is 70% larger than GoodNews, has higher article quality, and includes the locations of images within articles as an additional contextual cue.

A live demo can be accessed here. In the demo, you can provide the URL to a New York Times article. The server will then scrape the web page, extract the article and image, and feed them into our model to generate a caption.

Please cite with the following BibTeX:

@InProceedings{Tran_2020_CVPR,
  author = {Tran, Alasdair and Mathews, Alexander and Xie, Lexing},
  title = {Transform and Tell: Entity-Aware News Image Captioning},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}

Requirements

# Install Anaconda for Python and then create a dedicated environment.
# This will make it easier to reproduce our experimental numbers.
conda env create -f environment.yml
conda activate tell

# This step is only needed if you want to use the Jupyter notebook
python -m ipykernel install --user --name tell --display-name "tell"

# Our Pytorch uses CUDA 10.2. Ensure that CUDA_HOME points to the right
# CUDA version. Chagne this depending on where you installed CUDA.
export CUDA_HOME=/usr/local/cuda-10.2

# We also pin the apex version, which is used for mixed precision training
cd libs/apex
git submodule init && git submodule update .
pip install -v --no-cache-dir --global-option="--pyprof" --global-option="--cpp_ext" --global-option="--cuda_ext" ./

# Install our package
cd ../.. && python setup.py develop

# Spacy is used to calcuate some of the evaluation metrics
spacy download en_core_web_lg

# We use nltk to tokenize the generated text to compute linguistic metrics
python -m nltk.downloader punkt

Getting Data

The quickest way to get the data is to send an email to [email protected] (where first is alasdair and last is tran) to request the MongoDB dump that contains the dataset. Alternatively, see here for instructions on how to get the data from scratch, which will take a few days.

Once we have obtained the data from the authors, which consists of two directories expt and data, you can simply put them at the root of this repo.

# If the data is download from our Cloudstor server, then you might need
# to first unzip the archives using either tar or 7z.

# First, let's start an empty local MongoDB server on port 27017. Below
# we set the cache size to 10GB of RAM. Change it depending on your system.
mkdir data/mongodb
mongod --bind_ip_all --dbpath data/mongodb --wiredTigerCacheSizeGB 10

# Next let's restore the NYTimes200k and GoodNews datasets
mongorestore --db nytimes --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/nytimes-2020-04-21.gz
mongorestore --db goodnews --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/goodnews-2020-04-21.gz

# Next we unarchive the image directories. For each dataset, you can see two
# directories: `images` and `images_processed`. The files in `images` are
# the orignal files scraped from the New York Times. You only need this
# if you want to recompute the face and object embeddings. Otherwise, all
# the experiments will use the images in `images_processed`, which have
# already been cropped and resized.
tar -zxf data/nytimes/images_processed.tar.gz -C data/nytimes/
tar -zxf data/goodnews/images_processed.tar.gz -C data/goodnews/

# We are now ready to train the models!

You can see an example of how we read the NYTimes800k samples from the MongoDB database here. Here's a minimum working example in Python:

import os
from PIL import Image
from pymongo import MongoClient

# Assume that you've already restored the database and the mongo server is running
client = MongoClient(host='localhost', port=27017)

# All of our NYTimes800k articles sit in the database `nytimes`
db = client.nytimes

# Here we select a random article in the training set.
article = db.articles.find_one({'split': 'train'})

# You can visit the original web page where this article came from
url = article['web_url']

# Each article contains a lot of fields. If you want the title, then
title = article['headline']['main'].strip()

# If you want the article text, then you will need to manually merge all
# paragraphs together.
sections = article['parsed_section']
paragraphs = []
for section in sections:
    if section['type'] == 'paragraph':
        paragraphs.append(section['text'])
article_text = '\n'.join(paragraphs)

# To get the caption of the first image in the article
pos = article['image_positions'][0]
caption = sections[pos]['text'].strip()

# If you want to load the actual image into memory
image_dir = 'data/nytimes/images_processed' # change this accordingly
image_path = os.path.join(image_dir, f"{sections[pos]['hash']}.jpg")
image = Image.open(image_path)

# You can also load the pre-computed FaceNet embeddings of the faces in the image
facenet_embeds = sections[pos]['facenet_details']['embeddings']

# Object embeddings are stored in a separate collection due to a size limit in mongo
obj = db.objects.find_one({'_id': sections[pos]['hash']})
object_embeds = obj['object_features']

Training and Evaluation

# Train the full model on NYTimes800k. This takes around 4 days on a Titan V GPU.
# The training will populate the directory expt/nytimes/9_transformer_objects/serialization
CUDA_VISIBLE_DEVICES=0 tell train expt/nytimes/9_transformer_objects/config.yaml -f

# Once training is finished, the best model weights are stored in
#   expt/nytimes/9_transformer_objects/serialization/best.th
# We can use this to generate captions on the NYTimes800k test set. This
# takes about one hour.
CUDA_VISIBLE_DEVICES=0 tell evaluate expt/nytimes/9_transformer_objects/config.yaml -m expt/nytimes/9_transformer_objects/serialization/best.th

# Compute the evaluation metrics on the test set
python scripts/compute_metrics.py -c data/nytimes/name_counters.pkl expt/nytimes/9_transformer_objects/serialization/generations.jsonl

There are also other model variants which are ablation studies. Check our paper for more details, but here's a summary:

Experiment Word Embedding Language Model Image Attention Weighted RoBERTa Location-Aware Face Attention Object Attention
1_lstm_glove GloVe LSTM
2_transformer_glove GloVe Transformer
3_lstm_roberta RoBERTa LSTM
4_no_image RoBERTa Transformer
5_transformer_roberta RoBERTa Transformer
6_transformer_weighted_roberta RoBERTa Transformer
7_trasnformer_location_aware RoBERTa Transformer
8_transformer_faces RoBERTa Transformer
9_transformer_objects RoBERTa Transformer

Acknowledgement

Owner
Alasdair Tran
Just another collection of fermions and bosons.
Alasdair Tran
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022