Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Overview

Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Español

Qué es esto?

Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflow Pipelines (KFP). En el contexto del uso de Vertex AI como solución, la idea es construir una arquitectura de machine learning lo más automatizada posible, integrando algunos de los principales servicios de Google Cloud Platform (GCP) tales como BigQuery (data warehousing), Google Cloud Storage (almacenamiento de objetos) y Container Registry (repositorio de inágenes de Docker).

Cómo lo corro?

  • Primero, ejecutar la notebook pipeline_setup.ipynb. Contiene la configuración de la infraestructura que será utilizada: se crean datasets en BigQuery y buckets en GCS y se instalan librerías necesarias. Además se crean imágenes de Docker y se pushea a Container Registry para los jobs de tuneos de hiperparámetros.
  • Segundo, dentro de la carpeta components se encuentra la notebook components_definition.ipynb que deberá ejecutarse para generar los .yamls que serán invocados en la notebook principal de ejecución.
  • Por último, seguir los pasos indicados en pipeline_run.ipynb. Algunos parámetros como la cantidad de trials de hiperparámetros o los tipos de máquina deseadas para algunos pasos pueden ser fácilmente modificables.

TO-DO

agregar costo estimado permisos

English

What is this?

This repo contains an end to end pipeline designed using Kubelow Pipelines SDK (KFP). Using Vertex AI as a main solution, the idea is to build a machine learning architecture as automated as possible, integrating some of the main Google Cloud Platform (GCP) services, such as BigQuery (data warehousing), Google Cloud Storage (storage system) and Container Registry (Docker images repository).

How do I run it?

  • First, execute pipeline_setup.ipynb. It contains the infraestructure configuration to be used: BigQuery datasets and GCS buckets are created and installs the necessary libraries. It also creates Docker images and pushes them to Container Registry in order to perform hyperparameter tuning jobs.
  • Second, in the components folder there's a notebook called components_definition.ipynb which should be executed to generate the .yamls to be invoked in the main notebook execution.
  • Last, follow the steps in pipeline_run.ipynb. Some parameters, as hyperparameter trials or machine types for given steps of the process can be easily modified.

To-do

estimated cost roles

Owner
Hernán Escudero
Lead Data Scientist & ML Engineer at @CoreBI R & Python // Shiny Developer
Hernán Escudero
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Matthew Colbrook 1 Apr 08, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022