The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

Overview

PixelNet: Representation of the pixels, by the pixels, and for the pixels.

We explore design principles for general pixel-level prediction problems, from low-level edge detection to mid-level surface normal estimation to high-level semantic segmentation. Convolutional predictors, such as the fully-convolutional network (FCN), have achieved remarkable success by exploiting the spatial redundancy of neighboring pixels through convolutional processing. Though computationally efficient, we point out that such approaches are not statistically efficient during learning precisely because spatial redundancy limits the information learned from neighboring pixels. We demonstrate that stratified sampling of pixels allows one to:

  1. add diversity during batch updates, speeding up learning;

  2. explore complex nonlinear predictors, improving accuracy;

  3. efficiently train state-of-the-art models tabula rasa (i.e., from scratch) for diverse pixel-labeling tasks.

Our single architecture produces state-of-the-art results for semantic segmentation on PASCAL-Context dataset, surface normal estimation on NYUDv2 depth dataset, and edge detection on BSDS. We also demonstrate self-supervised representation learning via geometry. With even few data points, we achieve results better than previous approaches for unsupervised/self-supervised representation learning. More details are available on our project page.

If you found these codes useful for your research, please consider citing -

@article{pixelnet,
  title={PixelNet: {R}epresentation of the pixels, by the pixels, and for the pixels},
  author={Bansal, Aayush and Chen, Xinlei, and  Russell, Bryan and Gupta, Abhinav and Ramanan, Deva},
  Journal={arXiv preprint arXiv:1702.06506},
  year={2017}
}

How to use these codes?

Anyone can freely use our codes for what-so-ever purpose they want to use. Here we give a detailed instruction to set them up and use for different applications. We will also provide the state-of-the-art models that we have trained.

The codes can be downloaded using the following command:

git clone --recursive https://github.com/aayushbansal/PixelNet.git
cd PixelNet

Our codebase is built around caffe. We have included a pointer to caffe as a submodule.

ls tools/caffe

Our required layers are available within this submodule. To install Caffe, please follow the instructions on their project page.

Models

We give a overview of the trained models in models/ directory.

ls models

Experiments

We provide scripts to train/test models in experiments/ directory.

ls experiments

Python Codes

The amazing Xinlei Chen wrote a version of code in Python as well and wrote the GPU implementation of sampling layer. Check it out. We have not tested that extensively. It would be great if you could help us test that :)

Owner
Aayush Bansal
Aayush Bansal
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

๐Ÿ”ฅ DrugOOD ๐Ÿ”ฅ : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | ไธญๆ–‡ Breaking News !! ๐Ÿ”ฅ ๐Ÿ”ฅ ๐Ÿ”ฅ OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
์‹œ๊ฐ ์žฅ์• ์ธ์„ ์œ„ํ•œ ์Šค๋งˆํŠธ ์ง€ํŒก์ด์— ํ™œ์šฉ๋  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation ์ฐธ๊ณ ํ•œ Github repositoy ๐Ÿ”— https://github.com/JunHyeok96/Road-Segmentation.git ๋ฐ์ดํ„ฐ์…‹ ๐Ÿ”— https://

๋ฐ˜๋“œ์‹œ ์กธ์—…ํ•œ๋‹ค (Team Just Graduate) 4 Dec 03, 2021
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clรฉment Pinard 361 Dec 12, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. ะŸั€ะธะฒะตั‚! My name is Egor. Was fรผr ein herrliches Frรผhl

Egor Spirin 12 Sep 02, 2022