Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Overview

Learning Intents behind Interactions with Knowledge Graph for Recommendation

This is our PyTorch implementation for the paper:

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He and Tat-Seng Chua (2021). Learning Intents behind Interactions with Knowledge Graph for Recommendation. Paper in arXiv. In WWW'2021, Ljubljana, Slovenia, April 19-23, 2021.

Author: Dr. Xiang Wang (xiangwang at u.nus.edu) and Mr. Tinglin Huang (tinglin.huang at zju.edu.cn)

Introduction

Knowledge Graph-based Intent Network (KGIN) is a recommendation framework, which consists of three components: (1)user Intent modeling, (2)relational path-aware aggregation, (3)indepedence modeling.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Environment Requirement

The code has been tested running under Python 3.6.5. The required packages are as follows:

  • pytorch == 1.5.0
  • numpy == 1.15.4
  • scipy == 1.1.0
  • sklearn == 0.20.0
  • torch_scatter == 2.0.5
  • networkx == 2.5

Reproducibility & Example to Run the Codes

To demonstrate the reproducibility of the best performance reported in our paper and faciliate researchers to track whether the model status is consistent with ours, we provide the best parameter settings (might be different for the custormized datasets) in the scripts, and provide the log for our trainings.

The instruction of commands has been clearly stated in the codes (see the parser function in utils/parser.py).

  • Last-fm dataset
python main.py --dataset last-fm --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Amazon-book dataset
python main.py --dataset amazon-book --dim 64 --lr 0.0001 --sim_regularity 0.00001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Alibaba-iFashion dataset
python main.py --dataset alibaba-fashion --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3

Important argument:

  • sim_regularity
    • It indicates the weight to control the independence loss.
    • 1e-4(by default), which uses 0.0001 to control the strengths of correlation.

Dataset

We provide three processed datasets: Amazon-book, Last-FM, and Alibaba-iFashion.

  • You can find the full version of recommendation datasets via Amazon-book, Last-FM, and Alibaba-iFashion.
  • We follow KB4Rec to preprocess Amazon-book and Last-FM datasets, mapping items into Freebase entities via title matching if there is a mapping available.
Amazon-book Last-FM Alibaba-ifashion
User-Item Interaction #Users 70,679 23,566 114,737
#Items 24,915 48,123 30,040
#Interactions 847,733 3,034,796 1,781,093
Knowledge Graph #Entities 88,572 58,266 59,156
#Relations 39 9 51
#Triplets 2,557,746 464,567 279,155
  • train.txt
    • Train file.
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
  • test.txt
    • Test file (positive instances).
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
    • Note that here we treat all unobserved interactions as the negative instances when reporting performance.
  • user_list.txt
    • User file.
    • Each line is a triplet (org_id, remap_id) for one user, where org_id and remap_id represent the ID of such user in the original and our datasets, respectively.
  • item_list.txt
    • Item file.
    • Each line is a triplet (org_id, remap_id, freebase_id) for one item, where org_id, remap_id, and freebase_id represent the ID of such item in the original, our datasets, and freebase, respectively.
  • entity_list.txt
    • Entity file.
    • Each line is a triplet (freebase_id, remap_id) for one entity in knowledge graph, where freebase_id and remap_id represent the ID of such entity in freebase and our datasets, respectively.
  • relation_list.txt
    • Relation file.
    • Each line is a triplet (freebase_id, remap_id) for one relation in knowledge graph, where freebase_id and remap_id represent the ID of such relation in freebase and our datasets, respectively.

Acknowledgement

Any scientific publications that use our datasets should cite the following paper as the reference:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Nobody guarantees the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions:

  • The user must acknowledge the use of the data set in publications resulting from the use of the data set.
  • The user may not redistribute the data without separate permission.
  • The user may not try to deanonymise the data.
  • The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from us.
Owner
A postgraduate student
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022