Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Overview

Learning Intents behind Interactions with Knowledge Graph for Recommendation

This is our PyTorch implementation for the paper:

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He and Tat-Seng Chua (2021). Learning Intents behind Interactions with Knowledge Graph for Recommendation. Paper in arXiv. In WWW'2021, Ljubljana, Slovenia, April 19-23, 2021.

Author: Dr. Xiang Wang (xiangwang at u.nus.edu) and Mr. Tinglin Huang (tinglin.huang at zju.edu.cn)

Introduction

Knowledge Graph-based Intent Network (KGIN) is a recommendation framework, which consists of three components: (1)user Intent modeling, (2)relational path-aware aggregation, (3)indepedence modeling.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Environment Requirement

The code has been tested running under Python 3.6.5. The required packages are as follows:

  • pytorch == 1.5.0
  • numpy == 1.15.4
  • scipy == 1.1.0
  • sklearn == 0.20.0
  • torch_scatter == 2.0.5
  • networkx == 2.5

Reproducibility & Example to Run the Codes

To demonstrate the reproducibility of the best performance reported in our paper and faciliate researchers to track whether the model status is consistent with ours, we provide the best parameter settings (might be different for the custormized datasets) in the scripts, and provide the log for our trainings.

The instruction of commands has been clearly stated in the codes (see the parser function in utils/parser.py).

  • Last-fm dataset
python main.py --dataset last-fm --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Amazon-book dataset
python main.py --dataset amazon-book --dim 64 --lr 0.0001 --sim_regularity 0.00001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3
  • Alibaba-iFashion dataset
python main.py --dataset alibaba-fashion --dim 64 --lr 0.0001 --sim_regularity 0.0001 --batch_size 1024 --node_dropout True --node_dropout_rate 0.5 --mess_dropout True --mess_dropout_rate 0.1 --gpu_id 0 --context_hops 3

Important argument:

  • sim_regularity
    • It indicates the weight to control the independence loss.
    • 1e-4(by default), which uses 0.0001 to control the strengths of correlation.

Dataset

We provide three processed datasets: Amazon-book, Last-FM, and Alibaba-iFashion.

  • You can find the full version of recommendation datasets via Amazon-book, Last-FM, and Alibaba-iFashion.
  • We follow KB4Rec to preprocess Amazon-book and Last-FM datasets, mapping items into Freebase entities via title matching if there is a mapping available.
Amazon-book Last-FM Alibaba-ifashion
User-Item Interaction #Users 70,679 23,566 114,737
#Items 24,915 48,123 30,040
#Interactions 847,733 3,034,796 1,781,093
Knowledge Graph #Entities 88,572 58,266 59,156
#Relations 39 9 51
#Triplets 2,557,746 464,567 279,155
  • train.txt
    • Train file.
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
  • test.txt
    • Test file (positive instances).
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
    • Note that here we treat all unobserved interactions as the negative instances when reporting performance.
  • user_list.txt
    • User file.
    • Each line is a triplet (org_id, remap_id) for one user, where org_id and remap_id represent the ID of such user in the original and our datasets, respectively.
  • item_list.txt
    • Item file.
    • Each line is a triplet (org_id, remap_id, freebase_id) for one item, where org_id, remap_id, and freebase_id represent the ID of such item in the original, our datasets, and freebase, respectively.
  • entity_list.txt
    • Entity file.
    • Each line is a triplet (freebase_id, remap_id) for one entity in knowledge graph, where freebase_id and remap_id represent the ID of such entity in freebase and our datasets, respectively.
  • relation_list.txt
    • Relation file.
    • Each line is a triplet (freebase_id, remap_id) for one relation in knowledge graph, where freebase_id and remap_id represent the ID of such relation in freebase and our datasets, respectively.

Acknowledgement

Any scientific publications that use our datasets should cite the following paper as the reference:

@inproceedings{KGIN2020,
  author    = {Xiang Wang and
              Tinglin Huang and 
              Dingxian Wang and
              Yancheng Yuan and
              Zhenguang Liu and
              Xiangnan He and
              Tat{-}Seng Chua},
  title     = {Learning Intents behind Interactions with Knowledge Graph for Recommendation},
  booktitle = {{WWW}},
  year      = {2021}
}

Nobody guarantees the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions:

  • The user must acknowledge the use of the data set in publications resulting from the use of the data set.
  • The user may not redistribute the data without separate permission.
  • The user may not try to deanonymise the data.
  • The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from us.
Owner
A postgraduate student
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022