Predicting 10 different clothing types using Xception pre-trained model.

Overview

Predicting-Clothing-Types

Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from lesson 8-deep learning held by DataTalksClub.

Model Demo

Model Demo

About the Dataset

Data Source

I use the dataset from here: https://github.com/alexeygrigorev/clothing-dataset-small

Dataset Information

This is a small dataset contains 10 different clothing types (dress, hat, longsleeve, outwear, pants, shirt, shoes, shorts, skirt, t-shirt).

Short Description of the Files

  1. training-final-dlmodel.ipynb -
  • used transfer learning to get Xception model pretrained on Imagnet.
  • freeze its CNN layers and train the dense layers.
  • used callbacks to save the best model over multiple epochs.
  • did some data augmentation to prevent overfitting and generalize our model.
  • Evalutaing the model, Aciheved 90% accuracy.
  1. streamlit_DLapp.py It deploy the trained model to streamlit cloud

  2. xception_v5_1_10_0.889.h5 - Best model from training saved in this binary format to load it easily.

  3. Pipfile and Pipfile.lock - Python package dependencies, in the pipfile you can find all necessary librares and packages to be able to run the scripts with no problem.

How to run this model

  1. open this link
  2. Upload an image from test dataset or any image from your device that has one clothing type.
  3. click on Predict Class button.

Note: watch this video to see the model in action

How to reproduce this model

  1. clone this repo to get all the code.
  2. clone the dataset using this command
!git clone git@github.com:alexeygrigorev/clothing-dataset-small.git
  1. install pipenv -which is a packaging tool that will help installing all dependencies- , use this command on your terminal.
pip install pipenv
  1. install all dependencies using pipenv by typing this command in your terminal inside your cloned repo folder
pipenv install
  1. Deploying the app locally or on the web 5.1. Locally: open the terminal and use this command
streamlit run streamlit_DLapp.py

5.2. on the web: check the documentation from official website.

Note

If you like my project, I appreciate you starring this repo. Please feel free to fork the content and contact me if you have any questions.

my linkedIn account

Owner
AbdAssalam Ahmad
Love AI & ML & DL
AbdAssalam Ahmad
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022