Learnable Motion Coherence for Correspondence Pruning

Related tags

Deep LearningLMCNet
Overview

Learnable Motion Coherence for Correspondence Pruning
Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang
Project Page

Any questions or discussions are welcomed!

Requirements & Compilation

  1. Requirements

Required packages are listed in requirements.txt.

The code is tested using Python-3.8.5 with PyTorch 1.7.1.

  1. Compile extra modules
cd network/knn_search
python setup.py build_ext --inplace
cd ../pointnet2_ext
python setup.py build_ext --inplace
cd ../../utils/extend_utils
python build_extend_utils_cffi.py

According to your installation path of CUDA, you may need to revise the variables cuda_version in build_extend_utils_cffi.py.

Datasets & Pretrain Models

  1. Download the YFCC100M dataset and the SUN3D dataset from the OANet repository and the ScanNet dataset from here.

  2. Download pretrained LMCNet models from here and SuperGlue/SuperPoint models from here.

  3. Unzip and arrange all files like the following.

data/
├── superpoint/
    └── superpoint_v1.pth
├── superglue/
    ├── superglue_indoor.pth
    └── superglue_outdoor.pth
├── model/
    ├── lmcnet_sift_indoor/
    ├── lmcnet_sift_outdoor/
    └── lmcnet_spg_indoor/
├── yfcc100m/
├── sun3d_test/
├── sun3d_train/
├── scannet_dataset/
└── scannet_train_dataset/

Evaluation

Evaluate on the YFCC100M with SIFT descriptors and Nearest Neighborhood (NN) matcher:

python eval.py --name scannet --cfg configs/eval/lmcnet_sift_yfcc.yaml

Evaluate on the SUN3D with SIFT descriptors and NN matcher:

python eval.py --name sun3d --cfg configs/eval/lmcnet_sift_sun3d.yaml

Evaluate on the ScanNet with SuperPoint descriptors and SuperGlue matcher:

python eval.py --name scannet --cfg configs/eval/lmcnet_spg_scannet.yaml

Training

  1. Generate training dataset for training on YFCC100M with SIFT descriptor and NN matcher.
python trainset_generate.py \
      --ext_cfg configs/detector/sift.yaml \
      --match_cfg configs/matcher/nn.yaml \
      --output data/yfcc_train_cache \
      --eig_name small_min \
      --prefix yfcc
  1. Model training.
python train_model.py --cfg configs/lmcnet/lmcnet_sift_outdoor_train.yaml

Acknowledgement

We have used codes from the following repositories, and we thank the authors for sharing their codes.

SuperGlue: https://github.com/magicleap/SuperGluePretrainedNetwork

OANet: https://github.com/zjhthu/OANet

KNN-CUDA: https://github.com/vincentfpgarcia/kNN-CUDA

Pointnet2.PyTorch: https://github.com/sshaoshuai/Pointnet2.PyTorch

Owner
liuyuan
liuyuan
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022