Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Overview

Point Cloud Denoising

input segmentation output
#9F1924 raw point-cloud #9E9E9E valid/clear #7300E6 fog #009999 rain #6EA046 de-noised

Abstract

Lidar sensors are frequently used in environment perception for autonomous vehicles and mobile robotics to complement camera, radar, and ultrasonic sensors. Adverse weather conditions are significantly impacting the performance of lidar-based scene understanding by causing undesired measurement points that in turn effect missing detections and false positives. In heavy rain or dense fog, water drops could be misinterpreted as objects in front of the vehicle which brings a mobile robot to a full stop. In this paper, we present the first CNN-based approach to understand and filter out such adverse weather effects in point cloud data. Using a large data set obtained in controlled weather environments, we demonstrate a significant performance improvement of our method over state-of-the-art involving geometric filtering.

Download Dataset

Information: Click here for registration and download.

Dataset Information

  • each channel contains a matrix with 32x400 values, ordered in layers and columns
  • the coordinate system is based on the conventions for land vehicles DIN ISO 8855 (Wikipedia)
hdf5 channels info
labels_1 groundtruth labels, 0: no label, 100: valid/clear, 101: rain, 102: fog
distance_m_1 distance in meter
intensity_1 raw intensity of the sensor
sensorX_1 x-coordinates in a projected 32x400 view
sensorY_1 y-coordinates in a projected 32x400 view
sensorZ_1 z-coordinates in a projected 32x400 view
hdf5 attributes info
dateStr date of the recording yyyy-mm-dd
timeStr timestamp of the recording HH:MM:SS
meteorologicalVisibility_m ground truth meteorological visibility in meter provided by the climate chamber
rainfallRate_mmh ground truth rainfall rate in mm/h provided by the climate chamber
# example for reading the hdf5 attributes
import h5py
with h5py.File(filename, "r", driver='core') as hdf5:
  weather_data = dict(hdf5.attrs)

Getting Started

We provide documented tools for visualization in python using ROS. Therefore, you need to install ROS and the rospy client API first.

  • install rospy
apt install python-rospy  

Then start "roscore" and "rviz" in separate terminals.

Afterwards, you can use the visualization tool:

  • clone the repository:
cd ~/workspace
git clone https://github.com/rheinzler/PointCloudDeNoising.git
cd ~/workspace/PointCloudDeNoising
  • create a virtual environment:
mkdir -p ~/workspace/PointCloudDeNoising/venv
virtualenv --no-site-packages -p python3 ~/workspace/PointCloudDeNoising/venv
  • source virtual env and install dependencies:
source ~/workspace/PointCloudDeNoising/venv/bin/activate
pip install -r requirements.txt
  • start visualization:
cd src
python visu.py

Notes:

  • We used the following label mapping for a single lidar point: 0: no label, 100: valid/clear, 101: rain, 102: fog
  • Before executing the script you should change the input path

Reference

If you find our work on lidar point-cloud de-noising in adverse weather useful for your research, please consider citing our work.:

@article{PointCloudDeNoising2020, 
  author   = {Heinzler, Robin and Piewak, Florian and Schindler, Philipp and Stork, Wilhelm},
  journal  = {IEEE Robotics and Automation Letters}, 
  title    = {CNN-based Lidar Point Cloud De-Noising in Adverse Weather}, 
  year     = {2020}, 
  keywords = {Semantic Scene Understanding;Visual Learning;Computer Vision for Transportation}, 
  doi      = {10.1109/LRA.2020.2972865}, 
  ISSN     = {2377-3774}
}

Acknowledgements

This work has received funding from the European Union under the H2020 ECSEL Programme as part of the DENSE project, contract number 692449. We thank Velodyne Lidar, Inc. for permission to publish this dataset.

Feedback/Questions/Error reporting

Feedback? Questions? Any problems or errors? Please do not hesitate to contact us!

Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022