Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Overview

Understanding the Generalization Benefit of Model Invariance from a Data Perspective

This is the code for our NeurIPS2021 paper "Understanding the Generalization Benefit of Model Invariance from a Data Perspective". There are two major parts in our code: sample covering number estimation and generalization benefit evaluation.

Requirments

  • Python 3.8
  • PyTorch
  • torchvision
  • scikit-learn-extra
  • scipy
  • robustness package (already included in our code)

Our code is based on robustness package.

Dataset

  • CIFAR-10 Download and extract the data into /data/cifar10
  • R2N2 Download the ShapeNet rendered images and put the data into /data/r2n2

The randomly sampled R2N2 images used for computing sample covering numbers and indices of examples for different sample sizes could be found here.

Estimation of sample covering numbers

To estimate the sample covering numbers of different data transformations, run the following script in /scn.

CUDA_VISIBLE_DEVICES=0 python run_scn.py  --epsilon 3 --transformation crop --cover_number_method fast --data-path /path/to/dataset 

Note that the input is a N x C x H x W tensor where N is sample size.

Evaluation of generalization benefit

To train the model with data augmentation method, run the following script in /learn_invariance for R2N2 dataset

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset r2n2 \
    --data ../data/2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --transforms view  \
    --inv-method aug \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name view

or the following script for CIFAR-10 dataset

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset cifar \
    --data ../data/cifar10 \
    --n-per-class all \
    --transforms crop  \
    --inv-method aug \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name crop 

By setting --transforms to be one of {none, flip, crop, rotate, view}, the specific transformation will be considered.

To train the model with regularization method, run the following script. Currently, the code only support 3d-view transformation on R2N2 dataset.

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset r2n2 \
    --data ../data/r2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --transforms view  \
    --inv-method reg \
    --inv-method-beta 1 \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name reg_view 

To evaluate the model with invariance loss and worst-case consistency accuracy, run the following script.

CUDA_VISIBLE_DEVICES=0 python main.py  \
    --dataset r2n2 \
    --data ../data/r2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --inv-method reg \
    --arch resnet18 \
    --resume /path/to/checkpoint.pt.best \
    --eval-only 1 \
    --transforms view  \
    --adv-eval 0 \
    --batch-size 2  \
    --no-store 

Note that to have the worst-case consistency accuracy we need to load 24 view images in R2N2RenderingsTorch class in dataset_3d.py.

Owner
PhD student at University of Maryland
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022