Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Overview

Understanding the Generalization Benefit of Model Invariance from a Data Perspective

This is the code for our NeurIPS2021 paper "Understanding the Generalization Benefit of Model Invariance from a Data Perspective". There are two major parts in our code: sample covering number estimation and generalization benefit evaluation.

Requirments

  • Python 3.8
  • PyTorch
  • torchvision
  • scikit-learn-extra
  • scipy
  • robustness package (already included in our code)

Our code is based on robustness package.

Dataset

  • CIFAR-10 Download and extract the data into /data/cifar10
  • R2N2 Download the ShapeNet rendered images and put the data into /data/r2n2

The randomly sampled R2N2 images used for computing sample covering numbers and indices of examples for different sample sizes could be found here.

Estimation of sample covering numbers

To estimate the sample covering numbers of different data transformations, run the following script in /scn.

CUDA_VISIBLE_DEVICES=0 python run_scn.py  --epsilon 3 --transformation crop --cover_number_method fast --data-path /path/to/dataset 

Note that the input is a N x C x H x W tensor where N is sample size.

Evaluation of generalization benefit

To train the model with data augmentation method, run the following script in /learn_invariance for R2N2 dataset

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset r2n2 \
    --data ../data/2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --transforms view  \
    --inv-method aug \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name view

or the following script for CIFAR-10 dataset

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset cifar \
    --data ../data/cifar10 \
    --n-per-class all \
    --transforms crop  \
    --inv-method aug \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name crop 

By setting --transforms to be one of {none, flip, crop, rotate, view}, the specific transformation will be considered.

To train the model with regularization method, run the following script. Currently, the code only support 3d-view transformation on R2N2 dataset.

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset r2n2 \
    --data ../data/r2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --transforms view  \
    --inv-method reg \
    --inv-method-beta 1 \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name reg_view 

To evaluate the model with invariance loss and worst-case consistency accuracy, run the following script.

CUDA_VISIBLE_DEVICES=0 python main.py  \
    --dataset r2n2 \
    --data ../data/r2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --inv-method reg \
    --arch resnet18 \
    --resume /path/to/checkpoint.pt.best \
    --eval-only 1 \
    --transforms view  \
    --adv-eval 0 \
    --batch-size 2  \
    --no-store 

Note that to have the worst-case consistency accuracy we need to load 24 view images in R2N2RenderingsTorch class in dataset_3d.py.

Owner
PhD student at University of Maryland
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022