Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Overview

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Tweet

Implementation detail for our paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

DigestPath 2019

The proposed scheme in this paper achieves the best results in MICCAI DigestPath2019 challenge (https://digestpath2019.grand-challenge.org/Home/) on colonoscopy tissue segmentation and classification task.

Dataset

Description of dataset can be found here: https://digestpath2019.grand-challenge.org/Dataset/

To download the the DigestPath2019 dataset, please sign the DATABASE USE AGREEMENT first at here: https://digestpath2019.grand-challenge.org/Download/

If you have problems about downing the dataset, please contact Prof. Hongsheng Li:[email protected]

Image sample:

Envs

  • Pytorch 1.0
  • Python 3+
  • cuda 9.0+

install

$ pip install -r  requirements.txt

apex : Tools for easy mixed precision and distributed training in Pytorch

$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dataset

├── data/
│   ├── tissue-train-neg/     
│   ├── tissue-train-pos-v1/

Preprocessing

$ cd code/
$ python preprocessing.py

Training

$ cd code/
$ python train.py --config_file='config/cac-unet-r50.yaml'

Citation

Please cite this paper in your publications if it helps your research:

@article{zhu2021multi,
  title={Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet},
  author={Zhu, Chuang and Mei, Ke and Peng, Ting and Luo, Yihao and Liu, Jun and Wang, Ying and Jin, Mulan},
  journal={Neurocomputing},
  volume={438},
  pages={165--183},
  year={2021},
  publisher={Elsevier}
}

About the multi-level adversarial segmentation part, you can read our ICASSP paper for more details:

@inproceedings{mei2020cross,
  title={Cross-stained segmentation from renal biopsy images using multi-level adversarial learning},
  author={Mei, Ke and Zhu, Chuang and Jiang, Lei and Liu, Jun and Qiao, Yuanyuan},
  booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={1424--1428},
  year={2020},
  organization={IEEE}
}

Author

Ke Mei, Ting Peng, Chuang Zhu

If you have any questions, you can contact me directly.

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022