Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

Related tags

Deep LearningDDMP-3D
Overview

DDMP-3D

Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021.

Instroduction

The objective of this paper is to learn context- and depthaware feature representation to solve the problem of monocular 3D object detection. We make following contributions: (i) rather than appealing to the complicated pseudo-LiDAR based approach, we propose a depth-conditioned dynamic message propagation (DDMP) network to effectively integrate the multi-scale depth information with the image context; (ii) this is achieved by first adaptively sampling context-aware nodes in the image context and then dynamically predicting hybrid depth-dependent filter weights and affinity matrices for propagating information; (iii) by augmenting a center-aware depth encoding (CDE) task, our method successfully alleviates the inaccurate depth prior; (iv) we thoroughly demonstrate the effectiveness of our proposed approach and show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.

arch

Requirements

Installation

Our code is based on DGMN, please refer to the installation for maskrcnn-benchmark compilation.

  • My settings

    conda activate maskrcnn_benchmark 
      (maskrcnn_benchmark)  conda list
      python				3.8.5
      pytorch				1.4.0          
      cudatoolkit				10.0.130  
      torchfile				0.1.0
      torchvision				0.5.0
      apex					0.1 

Data preparation

Download and unzip the full KITTI detection dataset to the folder /path/to/kitti/. Then place a softlink (or the actual data) in data/kitti/. There are two widely used training/validation set splits for the KITTI dataset. Here we only show the setting of split1, you can set split2 accordingly.

cd D4LCN
ln -s /path/to/kitti data/kitti
ln -s /path/to/kitti/testing data/kitti_split1/testing

Our method uses DORN (or other monocular depth models) to extract depth maps for all images. You can download and unzip the depth maps extracted by DORN here and put them (or softlink) to the folder data/kitti/depth_2/. (You can also change the path in the scripts setup_depth.py). Additionally, we also generate the xyz map (xy are the values along x and y axises on 2D plane, and z is the depth value) and save as pickle files and then operate like depth map.

Then use the following scripts to extract the data splits, which use softlinks to the above directory for efficient storage.

python data/kitti_split1/setup_split.py
python data/kitti_split1/setup_depth.py

Next, build the KITTI devkit eval for split1.

sh data/kitti_split1/devkit/cpp/build.sh

Lastly, build the nms modules

cd lib/nms
make

Training

You can change the batch_size according to the number of GPUs, default: 8 GPUs with batch_size = 5 on Tesla v100(32G).

If you want to utilize the resnet backbone pre-trained on the COCO dataset, it can be downloaded from git or Google Drive, default: ImageNet pretrained pytorch model, we downloaded the model and saved at 'data/'. You can also set use_corner and corner_in_3d to False for quick training.

See the configurations in scripts/config/config.py and scripts/train.py for details.

sh train.sh

Testing

Generate the results using:

python scripts/test.py

we afford the generated results for evaluation due to the tedious process of data preparation process. Unzip the output.zip and then execute the above evaluation commonds. We show the results in paper, and supplementary. Additionally, we also trained a model replacing the depth map (only contains value of z) with coordinate xyz (xy are the values along x and y axises on 2D plane), which achieves the best performance. You can download the best model on Google Drive.

Models [email protected]. [email protected] [email protected]
model in paper 23.13 / 27.46 31.14 / 37.71 19.45 / 24.53
model in supp 23.17 / 27.85 32.40 / 42.05 19.35 / 24.91
model with coordinate(xyz), config 23.53 / 28.16 30.21 / 38.78 19.72 / 24.80

Acknowledgements

We thank D4LCN and DGMN for their great works and repos.

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{wang2021depth,
  title={Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection},
  author={Wang, Li and Du, Liang and Ye, Xiaoqing and Fu, Yanwei and Guo, Guodong and Xue, Xiangyang and Feng, Jianfeng and Zhang, Li},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={454--463},
  year={2021}
}

Contact

For questions regarding DDMP-3D, feel free to post here or directly contact the authors ([email protected]).

Owner
Li Wang
Ph.D
Li Wang
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Saeed Lotfi 28 Dec 12, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023