DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

Overview

DI-smartcross

icon

DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control.

DI-smartcross is application platform under OpenDILab

Instruction

DI-smartcross is an open-source traffic crossing signal control platform. DI-smartcross applies several Reinforcement Learning policies training & evaluation for traffic signal control system in provided road nets.

DI-smartcross uses DI-engine, a Reinforcement Learning platform to build RL experiments. DI-smartcross uses SUMO (Simulation of Urban MObility) traffic simulator package to run signal control simulation.

DI-smartcross supports:

  • Single-Agent and Multi-Agent Reinforcement Learning
  • Synthetic and Real roadnet, Arterial and Grid network shape
  • Customizable observation, action and reward types
  • Easily achieve Multi-Environment Parallel, Actor-Learner Asynchronous Parallel when training with DI-engine

Installation

DI-smartcross supports SUMO version >= 1.6.0. Here we show an easy guide of installation with SUMO 1.8.0 on Linux.

Install sumo

  1. install required libraries and dependencies
sudo apt-get install cmake python g++ libxerces-c-dev libfox-1.6-dev libgdal-dev libproj-dev libgl2ps-dev swig
  1. download and unzip the installation package
tar xzf sumo-src-1.8.0.tar.gz
cd sumo-1.8.0
pwd 
  1. compile sumo
mkdir build/cmake-build
cd build/cmake-build
cmake ../..
make -j $(nproc)
  1. environment variables
echo 'export PATH=$HOME/sumo-1.8.0/bin:$PATH
export SUMO_HOME=$HOME/sumo-1.8.0' | tee -a $HOME/.bashrc
source ~/.bashrc
  1. check install
sumo

If success, the following message will be shown in the shell.

Eclipse SUMO sumo Version 1.8.0
  Build features: Linux-3.10.0-957.el7.x86_64 x86_64 GNU 5.3.1 Release Proj GUI SWIG GDAL GL2PS
  Copyright (C) 2001-2020 German Aerospace Center (DLR) and others; https://sumo.dlr.de
  License EPL-2.0: Eclipse Public License Version 2 <https://eclipse.org/legal/epl-v20.html>
  Use --help to get the list of options.

Install DI-smartcross

To install DI-smartcross, simply run pip install in the root folder of this repository. This will automatically insall DI-engine as well.

pip install -e . --user

Quick Start

Run training and evaluation

DI-smartcross supports DQN, Off-policy PPO and Rainbow DQN RL methods with multi-discrete actions for each crossing. A set of default DI-engine configs is provided for each policy. You can check the document of DI-engine to get detail instructions of these configs.

  • train RL policies
usage: sumo_train [-h] -d DING_CFG -e ENV_CFG [-s SEED] [--dynamic-flow]
                  [-cn COLLECT_ENV_NUM] [-en EVALUATE_ENV_NUM]
                  [--exp-name EXP_NAME]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  --dynamic-flow        use dynamic route flow
  -cn COLLECT_ENV_NUM, --collect-env-num COLLECT_ENV_NUM
                        collector sumo env num for training
  -en EVALUATE_ENV_NUM, --evaluate-env-num EVALUATE_ENV_NUM
                        evaluator sumo env num for training
  --exp-name EXP_NAME   experiment name to save log and ckpt

Example of running DQN in wj3 env with default config.

sumo_train -e smartcross/envs/sumo_arterial_wj3_default_config.yaml -d entry/config/sumo_wj3_dqn_default_config.py
  • evaluate existing policies
usage: sumo_eval [-h] [-d DING_CFG] -e ENV_CFG [-s SEED]
                 [-p {random,fix,dqn,rainbow,ppo}] [--dynamic-flow]
                 [-n ENV_NUM] [--gui] [-c CKPT_PATH]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  -p {random,fix,dqn,rainbow,ppo}, --policy-type {random,fix,dqn,rainbow,ppo}
                        RL policy type
  --dynamic-flow        use dynamic route flow
  -n ENV_NUM, --env-num ENV_NUM
                        sumo env num for evaluation
  --gui                 open gui for visualize
  -c CKPT_PATH, --ckpt-path CKPT_PATH
                        model ckpt path

Example of running random policy in wj3 env.

sumo_eval -p random -e smartcross/envs/sumo_arterial_wj3_default_config.yaml     

Environments

sumo env configuration

The configuration of sumo env is stored in a config .yaml file. You can take a look at the default config file to see how to modify env settings.

import yaml
from easy_dict import EasyDict
from smartcross.env import SumoEnv

with open('smartcross/envs/sumo_arterial_wj3_default_config.yaml') as f:
    cfg = yaml.safe_load(f)
cfg = EasyDict(cfg)
env = SumoEnv(config=cfg.env)

The env configuration consists of basic definition and observation\action\reward settings. The basic definition includes the cumo config file, episode length and light duration. The obs\action\reward define the detail setting of each contains.

env:
    sumocfg_path: 'arterial_wj3/rl_wj.sumocfg'
    max_episode_steps: 1500
    green_duration: 10
    yellow_duration: 3
    obs:
        ...
    action:
        ...
    reward:
        ...

Observation

We provide several types of observations of a traffic cross. If use_centrolized_obs is set True, the observation of each cross will be concatenated into one vector. The contents of observation can me modified by setting obs_type. The following observation is supported now.

  • phase: One-hot phase vector of current cross signal
  • lane_pos_vec: Lane occupancy in each grid position. The grid num can be set with lane_grid_num
  • traffic_volumn: Traffic volumn of each lane. Vehicle num / lane length * volumn ratio
  • queue_len: Vehicle waiting queue length of each lane. Waiting num / lane length * volumn ratio

Action

Sumo environment supports changing cross signal to target phase. The action space is set to multi-discrete for each cross to reduce action num.

Reward

Reward can be set with reward_type. Reward is calculated cross by cross. If use_centrolized_obs is set True, the reward of each cross will be summed up.

  • queue_len: Vehicle waiting queue num of each lane
  • wait_time: Wait time increment of vehicles in each lane
  • delay_time: Delay time of all vahicles in incomming and outgoing lanes
  • pressure: Pressure of a cross

Contributing

We appreciate all contributions to improve DI-smartcross, both algorithms and system designs.

License

DI-smartcross released under the Apache 2.0 license.

Citation

@misc{smartcross,
    title={{DI-smartcross: OpenDILab} Decision Intelligence platform for Traffic Crossing Signal Control},
    author={DI-smartcross Contributors},
    publisher = {GitHub},
    howpublished = {\url{`https://github.com/opendilab/DI-smartcross`}},
    year={2021},
}
Comments
  • style(hus): update email address

    style(hus): update email address

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by TuTuHuss 0
  • update and fix typo in docs

    update and fix typo in docs

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update envs, docs and actions

    update envs, docs and actions

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev

    Dev

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Merge branch 'main' into dev

    Merge branch 'main' into dev

    Description

    None

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update readme

    update readme

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • suit for 0.3.0

    suit for 0.3.0

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • v0.1.0 update

    v0.1.0 update

    Description

    add cityflow env suit ding 0.3

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: Version 0.0.1

    Dev: Version 0.0.1

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: update obs helper, mappo; update configs

    Dev: update obs helper, mappo; update configs

    Description

    update obs helper, mappo; add arterial7; update configs

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • add different settings for ppo

    add different settings for ppo

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by kxzxvbk 0
Releases(v0.1.0)
Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022