Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Overview

NASA-Space-Apps-Challenge-2021

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Documentation of the Illuminat3d App

Version 1.0

The main scope of this application is to plot the light curve of an asteroid for certain values of the input variables. The project consists of two .py files (.py and .py).

GUIFinal.py file

This is the file that we create the User Interface (UI) of our application. It have a space that the user load his 3D model (.stl file format). Then the user must fill in every enrty of the variables in the right form and finally push the Run Program button to see the light curve plot in the corresponding window. The User Interface except all the widgets (Button, Label, Entry, Images) has and 3 functions:

  • browseFiles(): in this function we set the directory that the application can search to find the user's 3D model. When a file is selected then the label of the file explorer change text to specify the path of the file.
  • popup_window_1(): function that triggered when the info button is pressed and pops out an information message.
  • checkInputs(): in this function we check the validity of the input variables and then create an Illuminated object to start running the main program.

Illuminated_Class_Git.py file

In this file we create a class Illuminated to control the core of our program and to plot the light curves of the input 3D models. This class has several functions to produce the expected output.

  • __ init__(self, filename, initRot, rotAxis, frames, albedo, omega): is the contructor of the class which assigns the proper values to the class variables. It recieves as inputs the filename of the 3D model(filename), the initial rotation axis and angle (initRot), the rotational axis (rotAxis), the number of frames (frames), the albedo (albedo) and the omega angle(omega).
  • checkTheModel(self): this function check if the 3D model that the user inserted is valid(close object). Return boolean value True or False.
  • computeIntersectionsAreas(self, multi): recieves a Multipolygon object and returns its total area.
  • multColumns(self, col1, col2): recieves two arrays and produce a new one of the same length. Each element of this array is the multiplication of the two initial arrays' corresponding elements (i.e. new_col[5] = col1[5]*col2[5])
  • sortCoords(self, arr, ind): this is an extra function which sorts the rows of the 2D arr array under the 1D index array.
  • sortDist(self, arr, ind): this is an extra function which sorts the values of the 1D arr array under the 1D index array.
  • desortDist(self, arr, ind): with this function we de-sort the distances array back to its initial structure.
  • computeCoefs(self, coords, dist, dots): compute the coefficients array depending on the coordinates, distances and dots arrays. By taking one triangle at a time we compute the area of each triangle that is seen by the viewer.
  • n_vec(self, tha, thb, thc): return a normalized vector as the cosines of the given angles tha, thb, thc. Each input is the angle that this vector forms with the corresponding axix (x, y, z).
  • v_surf(self, cube ,n_v): return the viewing surface when looking in the n_v direction (either as the source or as the viewer).
  • execution(self): in this function we calibrate the model with its rotation and the position of the light and the viewer and we plot the asteroid's light curve. The number of the plot's points is implied by the number of frames.

Installation

Use the package manager pip to install the necessary libraries.

pip install python-math
pip install numpy-stl
pip install matplotlib
pip install tk
pip install shapely

Execution

After you download the project in your computer, you must move to the directory that the python files are and run the command below.

python GUIFinal.py

Members

  1. Doli Maria
  2. Eleftheriadis Emmanouil
  3. Komitis Dimitrios
  4. Liodis Ioannis
  5. Noula Konstantina
  6. Rodiou Eirini
Owner
Eleftheriadis Emmanouil
Eleftheriadis Emmanouil
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022