Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Overview

NASA-Space-Apps-Challenge-2021

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Documentation of the Illuminat3d App

Version 1.0

The main scope of this application is to plot the light curve of an asteroid for certain values of the input variables. The project consists of two .py files (.py and .py).

GUIFinal.py file

This is the file that we create the User Interface (UI) of our application. It have a space that the user load his 3D model (.stl file format). Then the user must fill in every enrty of the variables in the right form and finally push the Run Program button to see the light curve plot in the corresponding window. The User Interface except all the widgets (Button, Label, Entry, Images) has and 3 functions:

  • browseFiles(): in this function we set the directory that the application can search to find the user's 3D model. When a file is selected then the label of the file explorer change text to specify the path of the file.
  • popup_window_1(): function that triggered when the info button is pressed and pops out an information message.
  • checkInputs(): in this function we check the validity of the input variables and then create an Illuminated object to start running the main program.

Illuminated_Class_Git.py file

In this file we create a class Illuminated to control the core of our program and to plot the light curves of the input 3D models. This class has several functions to produce the expected output.

  • __ init__(self, filename, initRot, rotAxis, frames, albedo, omega): is the contructor of the class which assigns the proper values to the class variables. It recieves as inputs the filename of the 3D model(filename), the initial rotation axis and angle (initRot), the rotational axis (rotAxis), the number of frames (frames), the albedo (albedo) and the omega angle(omega).
  • checkTheModel(self): this function check if the 3D model that the user inserted is valid(close object). Return boolean value True or False.
  • computeIntersectionsAreas(self, multi): recieves a Multipolygon object and returns its total area.
  • multColumns(self, col1, col2): recieves two arrays and produce a new one of the same length. Each element of this array is the multiplication of the two initial arrays' corresponding elements (i.e. new_col[5] = col1[5]*col2[5])
  • sortCoords(self, arr, ind): this is an extra function which sorts the rows of the 2D arr array under the 1D index array.
  • sortDist(self, arr, ind): this is an extra function which sorts the values of the 1D arr array under the 1D index array.
  • desortDist(self, arr, ind): with this function we de-sort the distances array back to its initial structure.
  • computeCoefs(self, coords, dist, dots): compute the coefficients array depending on the coordinates, distances and dots arrays. By taking one triangle at a time we compute the area of each triangle that is seen by the viewer.
  • n_vec(self, tha, thb, thc): return a normalized vector as the cosines of the given angles tha, thb, thc. Each input is the angle that this vector forms with the corresponding axix (x, y, z).
  • v_surf(self, cube ,n_v): return the viewing surface when looking in the n_v direction (either as the source or as the viewer).
  • execution(self): in this function we calibrate the model with its rotation and the position of the light and the viewer and we plot the asteroid's light curve. The number of the plot's points is implied by the number of frames.

Installation

Use the package manager pip to install the necessary libraries.

pip install python-math
pip install numpy-stl
pip install matplotlib
pip install tk
pip install shapely

Execution

After you download the project in your computer, you must move to the directory that the python files are and run the command below.

python GUIFinal.py

Members

  1. Doli Maria
  2. Eleftheriadis Emmanouil
  3. Komitis Dimitrios
  4. Liodis Ioannis
  5. Noula Konstantina
  6. Rodiou Eirini
Owner
Eleftheriadis Emmanouil
Eleftheriadis Emmanouil
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022