Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Related tags

Deep Learningproxprop
Overview

Proximal Backpropagation

Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient steps to update the network parameters. We have analyzed this algorithm in our ICLR 2018 paper:

Proximal Backpropagation (Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers; ICLR 2018) [https://arxiv.org/abs/1706.04638]

tl;dr

  • We provide a PyTorch implementation of ProxProp for Python 3 and PyTorch 1.0.1.
  • The results of our paper can be reproduced by executing the script paper_experiments.sh.
  • ProxProp is implemented as a torch.nn.Module (a 'layer') and can be combined with any other layer and first-order optimizer. While a ProxPropConv2d and a ProxPropLinear layer already exist, you can generate a ProxProp layer for your favorite linear layer with one line of code.

Installation

  1. Make sure you have a running Python 3 (tested with Python 3.7) ecosytem. We recommend that you use a conda install, as this is also the recommended option to get the latest PyTorch running. For this README and for the scripts, we assume that you have conda running with Python 3.7.
  2. Clone this repository and switch to the directory.
  3. Install the dependencies via conda install --file conda_requirements.txt and pip install -r pip_requirements.txt.
  4. Install PyTorch with magma support. We have tested our code with PyTorch 1.0.1 and CUDA 10.0. You can install this setup via
    conda install -c pytorch magma-cuda100
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  5. (optional, but necessary to reproduce paper experiments) Download the CIFAR-10 dataset by executing get_data.sh

Training neural networks with ProxProp

ProxProp is implemented as a custom linear layer (torch.nn.Module) with its own backward pass to take implicit gradient steps on the network parameters. With this design choice it can be combined with any other layer, for which one takes explicit gradient steps. Furthermore, the resulting update direction can be used with any first-order optimizer that expects a suitable update direction in parameter space. In our paper we prove that ProxProp generates a descent direction and show experiments with Nesterov SGD and Adam.

You can use our pre-defined layers ProxPropConv2d and ProxPropLinear, corresponding to nn.Conv2d and nn.Linear, by importing

from ProxProp import ProxPropConv2d, ProxPropLinear

Besides the usual layer parameters, as detailed in the PyTorch docs, you can provide:

  • tau_prox: step size for a proximal step; default is tau_prox=1
  • optimization_mode: can be one of 'prox_exact', 'prox_cg{N}', 'gradient' for an exact proximal step, an approximate proximal step with N conjugate gradient steps and an explicit gradient step, respectively; default is optimization_mode='prox_cg1'. The 'gradient' mode is for a fair comparison with SGD, as it incurs the same overhead as the other methods in exploiting a generic implementation with the provided PyTorch API.

If you want to use ProxProp to optimize your favorite linear layer, you can generate the respective module with one line of code. As an example for the the Conv3d layer:

from ProxProp import proxprop_module_generator
ProxPropConv3d = proxprop_module_generator(torch.nn.Conv3d)

This gives you a default implementation for the approximate conjugate gradient solver, which treats all parameters as a stacked vector. If you want to use the exact solver or want to use the conjugate gradient solver more efficiently, you have to provide the respective reshaping methods to proxprop_module_generator, as this requires specific knowledge of the layer's structure and cannot be implemented generically. As a template, take a look at the ProxProp.py file, where we have done this for the ProxPropLinear layer.

By reusing the forward/backward implementations of existing PyTorch modules, ProxProp becomes readily accessible. However, we pay an overhead associated with generically constructing the backward pass using the PyTorch API. We have intentionally sided with genericity over speed.

Reproduce paper experiments

To reproduce the paper experiments execute the script paper_experiments.sh. This will run our paper's experiments, store the results in the directory paper_experiments/ and subsequently compile the results into the file paper_plots.pdf. We use an NVIDIA Titan X GPU; executing the script takes roughly 3 hours.

Acknowledgement

We want to thank Soumith Chintala for helping us track down a mysterious bug and the whole PyTorch dev team for their continued development effort and great support to the community.

Publication

If you use ProxProp, please acknowledge our paper by citing

@article{Frerix-et-al-18,
    title = {Proximal Backpropagation},
    author={Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers},
    journal={International Conference on Learning Representations},
    year={2018},
    url = {https://arxiv.org/abs/1706.04638}
}
Owner
Thomas Frerix
Thomas Frerix
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022