[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

Related tags

Deep LearningCaaM
Overview

CaaM

This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, which will be further refined and checked recently.

0. Bibtex

If you find our codes helpful, please cite our paper:

@inproceedings{wang2021causal,
  title={Causal Attention for Unbiased Visual Recognition},
  author={Wang, Tan and Zhou, Chang and Sun, Qianru and Zhang, Hanwang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

1. Preparation

  1. Installation: Python3.6, Pytorch1.6, tensorboard, timm(0.3.4), scikit-learn, opencv-python, matplotlib, yaml
  2. Dataset:
  1. Please remember to change the data path in the config file.

2. Evaluation:

  1. For ResNet18 on NICO dataset
CUDA_VISIBLE_DEVICES=0 python train.py -cfg conf/ours_resnet18_multilayer2_bf0.02_noenv_pw5e5.yaml -debug -gpu -eval pretrain_model/nico_resnet18_ours_caam-best.pth

The results will be: Val Score: 0.4638461470603943 Test Score: 0.4661538600921631

  1. For T2T-ViT7 on NICO dataset
CUDA_VISIBLE_DEVICES=0,1 python train.py -cfg conf/ours_t2tvit7_bf0.02_s4_noenv_pw5e4.yaml -debug -gpu -multigpu -eval pretrain_model/nico_t2tvit7_ours_caam-best.pth

The results will be: Val Score: 0.3799999952316284 Test Score: 0.3761538565158844

  1. For ImageNet-9 dataset

Similarly, the pretrained model is in pretrain_model. Please note that on ImageNet9, we report the best performance for the 3 metrics in our paper. The pretrained model is for bias and unbias and we did not save the model for the best ImageNet-A.

3. Train

To perform training, please run the sh file in scripts. For example:

sh scripts/run_baseline_resnet18.sh

4. An interesting finding

Recently I found an interesting thing by accident. The mixup added on the baseline model would not bring much performance improvements (see Table 1. in the main paper). However, when performing mixup based on our CaaM, the performance can be further boosted.

Specifically, you can active the mixup by:

sh scripts/run_ours_resnet18_mixup.sh

This can make our CaaM achieve about 50~51% Val & Test accuracy on NICO dataset.

Acknowledgement

Special thanks to the authors of ReBias and IRM, and the datasets used in this research project.

If you have any question or find any bug, please kindly email me.

Owner
Wang Tan
Ph.D. student of MreaL Lab, NTU
Wang Tan
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022