Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

Related tags

Deep LearningSPDNet
Overview

SPDNet

Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) arXiv GitHub Stars

Requirements

  • Linux Platform
  • NVIDIA GPU + CUDA CuDNN
  • PyTorch == 0.4.1
  • torchvision0.2.0
  • pytorch_wavelets
  • Python3.6.0
  • imageio2.5.0
  • numpy1.14.0
  • opencv-python
  • scikit-image0.13.0
  • tqdm4.32.2
  • scipy1.2.1
  • matplotlib3.1.1
  • ipython7.6.1
  • h5py2.10.0

Training

  1. Modify data path in src/data/rainheavy.py and src/data/rainheavytest.py
    datapath/data/***.png
    datapath/label/***.png
  2. Begining training:
$ cd ./src/
$ python main.py --save spdnet --model spdnet --scale 2 --epochs 300 --batch_size 16 --patch_size 128 --data_train RainHeavy --n_threads 0 --data_test RainHeavyTest --data_range 1-1800/1-200 --loss 1*MSE  --save_results --lr 5e-4 --n_feats 32 --n_resblocks 3

Test

The pre-trained model can be available at google drive: https://drive.google.com/drive/folders/1ylON5AkJVayoypOXDaUEkYd76LtMF-lB?usp=sharing.

$ cd ./src/
$ python main.py --data_test RainHeavyTest  --ext img --scale 2  --data_range 1-1800/1-200 --pre_train ../experiment/spdnet/model/model_best.pt --model spdnet --test_only --save_results --save RCDNet_test

All PSNR and SSIM results are computed by using this Matlab code, based on Y channel of YCbCr space.

Datasets

Rain200H: 1800 training pairs and 200 testing pairs
Rain200L: 1800 training pairs and 200 testing pairs
Rain800: 700 training pairs and 100 testing pairs
Rain1200: 12000 traing paris and 1200 testing pairs
SPA-Data: 638492 training pairs and 1000 testing pairs

Acknowledgement

Code borrows from RCDNet. Thanks for sharing !

Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022