PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Overview

Pytorch implementation of VQVAE.

This paper combines 2 tricks:

  1. Vector Quantization (check out this amazing blog for better understanding.)
  2. Straight-Through (It solves the problem of back-propagation through discrete latent variables, which are intractable.)

architecture

This model has a neural network encoder and decoder, and a prior just like the vanila Variational AutoEncoder(VAE). But this model also has a latent embedding space called codebook(size: K x D). Here, K is the size of latent space and D is the dimension of each embedding e.

In vanilla variational autoencoders, the output from the encoder z(x) is used to parameterize a Normal/Gaussian distribution, which is sampled from to get a latent representation z of the input x using the 'reparameterization trick'. This latent representation is then passed to the decoder. However, In VQVAEs, z(x) is used as a "key" to do nearest neighbour lookup into the embedding codebook c, and get zq(x), the closest embedding in the space. This is called Vector Quantization(VQ) operation. Then, zq(x) is passed to the decoder, which reconstructs the input x. The decoder can either parameterize p(x|z) as the mean of Normal distribution using a transposed convolution layer like in vannila VAE, or it can autoregressively generate categorical distribution over [0,255] pixel values like PixelCNN. In this project, the first approach is used.

The loss function is combined of 3 components:

  1. Regular Reconstruction loss
  2. Vector Quantization loss
  3. Commitment loss

Vector Quantization loss encourages the items in the codebook to move closer to the encoder output ||sg[ze(x) - e||^2] and Commitment loss encourages the output of the encoder to be close to embedding it picked, to commit to its codebook embedding. ||ze(x) - sg[e]]||^2 . commitment loss is multiplied with a constant beta, which is 1.0 for this project. Here, sg means "stop-gradient". Which means we don't propagate the gradients with respect to that term.

Results:

The Model is trained on MNIST and CIFAR10 datasets.

Target 👉 Reconstructed Image


👉

👉

gif

Details:

  1. Trained models for MNIST and CIFAR10 are in the Trained models directory.
  2. Hidden size of the bottleneck(z) for MNIST and CIFAR10 is 128, 256 respectively.
Owner
Vrushank Changawala
Vrushank Changawala
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022