🧑‍🔬 verify your TEAL program by experiment and observation

Related tags

Deep Learninggraviton
Overview

Graviton - Testing TEAL with Dry Runs

Tutorial

Local Installation

The following instructions assume that you have make available in your local environment. In Mac OS and Linux this is most likely already available and in Windows one way to install is with chocolatey and the command choco install make.

To install all dependencies:

make pip-notebooks

Running Blackbox Integration Tests against a Sandbox

Prereq - Install and Symbolically Link to the Sandbox

If you would like to use the Makefile without modification and with full functionality, you should create a symbolic link to the algorand sandbox repo as described here. There are many ways to accomplish this. Assuming you have cloned the sandbox into the path /path/to/algorand/sandbox/ and that you've cd'ed into the cloned graviton directory you should create a symbolic link as follows:

Linux / Mac OS

ln -s /path/to/algorand/sandbox/ sandbox

Windows 10+

mklink sandbox \path\to\algorand\sandbox

Test the Sandbox

With your sandbox running to test that the sandbox is running properly, use the following:

make local-sandbox-test

Run the Integration Tests

make integration-test

Running and Testing Jupyter Notebooks

To run the notebook notebooks/quadratic_factoring_game.ipynb for example:

make local-notebook NOTEBOOK=notebooks/quadratic_factoring_game.ipynb

To non-interactively run all the jupyter notebook tests:

make notebooks-test

Ensuring that all is Copacetic Before Pushing to Github

To test in your local environment that everything is looking good before pushing to Github, it is recommended that you run make all-tests

If you would like to simulate the github actions locally, you'll need to install nektos act. On Mac OS with Docker previously installed you can use brew install act; on the other hand, on Linux and Windows follow the installation instructions in the nextos repo link above.

Once act is available you can simulate all the github actions integration tests with:

make local-gh-simulate
Comments
  • Adding graviton logo and badges

    Adding graviton logo and badges

    Proposed changes

    • Adds 2 variations on a proposal for graviton logo inspired by this diagram. Main readme contains colored gradient background (teal and green from algorand's website), and tutorial page is reversed black background and gradient on text itself.
    • I noticed that markdownlint is used so i had to add one extra disable for a rule that would prevent having header image as a first content in md file. If you'd like to follow the convention though - feel free to to suggest moving text above the icon.
    • Images are hosted on ipfs and here is a .psd version also on ipfs -> ipfs://QmVcS8ULiEUrzs3m6bFQncuRt4MUV8ydnJmyen2wWCt5uq, should be possible to download it and edit in photoshop further if needed.
    • Lastly adds 2 tiny repo badges (visitors count and link to algorand website), could be used as a starter template in case you wanna add more badges (like coverage, ci status and etc) in future.
    opened by aorumbayev 4
  • Enforce mypy

    Enforce mypy

    Enforces mypy throughout the repo making a best-effort attempt to remediate mypy errors.

    The PR adds # type: ignore in several places as a workaround. In these cases, I was unable to remediate the mypy error in a way that preserved tests. I welcome feedback or alternative suggestions.

    opened by michaeldiamant 3
  • Update DryRun cost fields and expose DryRun accounts to users

    Update DryRun cost fields and expose DryRun accounts to users

    For certain use cases, it's necessary to set the balance of the app account to some nonzero value. One example is testing inner app calls. This PR allows the users to set balances for accounts and updates the existing dryrun cost field (which is now deprecated) and adds support for the new cost fields BudgetAdded and BudgetConsumed.

    Testing: Unit tests.

    opened by algoidurovic 2
  • Better error messages for `DryRunInspector.from_single_response()`

    Better error messages for `DryRunInspector.from_single_response()`

    First Real Unit Test

    @algoidurovic pointed out the following confusing error that he encountered while using graviton for a test (cv. this pyteal commit):

    require exactly 1 dry run transaction to create a singleton but had 0 instead

    This PR will first check the existence of "error" in the dry-run response, and pass that through when encountered.

    Additionally: Discarding the former sanity_test.py which was just a stub in favor or inspector_test.py

    opened by tzaffi 2
  • Illustrate running integration tests with Python 3.10 via asdf

    Illustrate running integration tests with Python 3.10 via asdf

    Illustrates running integration tests with Python 3.10 via asdf.

    After working toward the PR, I discovered a better approach. In case the approach is a useful reference later on, I'm opening and closing the PR for illustrative purposes.

    opened by michaeldiamant 2
  • Better assertion message for invariant predicates of 2 variables

    Better assertion message for invariant predicates of 2 variables

    Problem

    As you can see in the full printout below, when we call invariant.validates() on an invariant that was defined by a 2-variable predicate, we get an inscrutable expected description.

    This invariant was defined via:

    predicate = (lambda args, actual: "PASSE" == actual if args[0] else True)
    name = 'DryRunProperty.status' 
    invariant = Invariant(predicate, name=name)
    

    and spat out the following msg:

    <<<<<<<<<<<Invariant for 'DryRunProperty.status' failed for for args (2,): actual is [PASS] BUT expected [<function test_exercises.<locals>.<lambda> at 0x1082557e0>]>>>>>>>>>>>
    

    Full error:

    E           AssertionError: ===============
    E               <<<<<<<<<<<Invariant for 'DryRunProperty.status' failed for for args (2,): actual is [PASS] BUT expected [<function test_exercises.<locals>.<lambda> at 0x1082557e0>]>>>>>>>>>>>
    E               ===============
    E               App Trace:
    E                  step |   PC# |   L# | Teal              | Scratch   | Stack
    E           --------+-------+------+-------------------+-----------+----------------------
    E                 1 |     1 |    1 | #pragma version 6 |           | []
    E                 2 |     2 |    2 | arg_0             |           | [0x0000000000000002]
    E                 3 |     3 |    3 | btoi              |           | [2]
    E                 4 |     7 |    6 | label1:           |           | [2]
    E                 5 |     9 |    7 | store 0           | 0->2      | []
    E                 6 |    11 |    8 | load 0            |           | [2]
    E                 7 |    13 |    9 | pushint 2         |           | [2, 2]
    E                 8 |    14 |   10 | exp               |           | [4]
    E                 9 |     6 |    4 | callsub label1    |           | [4]
    E                10 |    15 |   11 | retsub            |           | [4]
    E               ===============
    E               MODE: ExecutionMode.Signature
    E               TOTAL COST: None
    E               ===============
    E               FINAL MESSAGE: PASS
    E               ===============
    E               Messages: ['PASS']
    E               Logs: []
    E               ===============
    E               -----BlackBoxResult(steps_executed=10)-----
    E               TOTAL STEPS: 10
    E               FINAL STACK: [4]
    E               FINAL STACK TOP: 4
    E               MAX STACK HEIGHT: 2
    E               FINAL SCRATCH: {0: 2}
    E               SLOTS USED: [0]
    E               FINAL AS ROW: {'steps': 10, ' top_of_stack': 4, 'max_stack_height': 2, '[email protected]': 2}
    E               ===============
    E               Global Delta:
    E               []
    E               ===============
    E               Local Delta:
    E               []
    E               ===============
    E               TXN AS ROW: {' Run': 1, ' cost': None, ' last_log': '`None', ' final_message': 'PASS', ' Status': 'PASS', 'steps': 10, ' top_of_stack': 4, 'max_stack_height': 2, '[email protected]': 2, 'Arg_00': 2}
    E               ===============
    E               <<<<<<<<<<<Invariant for 'DryRunProperty.status' failed for for args (2,): actual is [PASS] BUT expected [<function test_exercises.<locals>.<lambda> at 0x1082557e0>]>>>>>>>>>>>
    E               ===============
    
    enhancement 
    opened by tzaffi 2
  • Add `mypy` and `black` and `flake8`

    Add `mypy` and `black` and `flake8`

    Since the main consumer of this repo is pyteal and pyteal requires mypy and black, this repo should follow similar conventions and processes.

    • [x] add black
    • [x] add flake8
    • [x] add mypy
    opened by tzaffi 2
  • Basic Project Setup + Migrating Code from PySDK PR #298

    Basic Project Setup + Migrating Code from PySDK PR #298

    TEAL Blackbox in Graviton

    This PR takes over from the now defunct PySDK PR #298

    TLDR; Dry Run a Sequence of Inputs on Apps/LogicSigs, View Stats, and make Assertions on Behavior

    Please refer to the TEAL Blackbox HowTo / README for full details

    A Place to Test Our Python Repo Best Practices

    Since this is a brand new repo this is a good place to set some new conventions that our other Python repos should eventually follow also. This PR does not claim to have achieved such a state (especially in light of issues #4 and #7).

    Some conventions are implicitly advanced in this PR:

    • no requirements.txt:
      • instead, add an extras_require (e.g. extras_require={"test": "pytest==7.1.1"},) in setup.py
      • install the test-dependencies with pip install -e.[test]
    • pin internal algorand dependencies using version tags
    • (For projects that use github actions) Use act to simulate github actions locally
    • Use Makefile to summarize basic setup/testing commands, and incorporate these commands in CI configs
    • ~tests should contain all unit and integration tests (as opposed to pairing *_test.py files next to the file they are testing)~ No longer considered a "best practice"
    • test files should not be installed by default (previous bullet point makes this goal easier)
    • linter configurations should go into setup.cfg whenever possible
    • lint with black --check and flake8

    Testing

    make integration-test
    

    Simulating Github Actions Locally (on a Mac)

    make mac-gh-simulate
    

    TODO

    CI / Best Practices

    • [ ] #2
    • [x] #4
    • [x] #6
    • [ ] #7

    Features / Improvements

    • [ ] #3
    • [x] #5

    Migrate Sandbox Code from PySDK and Run All Tests

    Testing is cribbing off of PyTeal's "Run blackbox tests in CI" PR

    Team Scytale 
    opened by tzaffi 2
  • Stop using dry-run's cost

    Stop using dry-run's cost

    Cost is Deprecated in go-algorand's Dry Run

    As of go-algorand PR #3957 the dry run response transaction top-level-field cost is being deprecated. There is one usage of this field in non-deprecated graviton code.

    The good news is that new better fields BudgetConsumed and BudgetAdded are being introduced in the same PR and that the cost can be calculated as

    net cost = BudgetConsumed - BudgetAdded
    

    Action items

    • [x] go-algorand # 3957 is released
    • [x] have a PR that replaces cost with the net cost formula above and stops referencing the original cost field
    • [x] have a PR that allows accessing BudgetConsumed and BudgetAdded in the same way that cost is
    • [ ] PR's above have been merged and released
    Team Scytale 
    opened by tzaffi 1
  • Allow Modifying Transaction in Dry Run and Other Improvements

    Allow Modifying Transaction in Dry Run and Other Improvements

    Summary of Changes

    • .github/workflows/build.yml + Makefile:
      • allow testing and running jupyter notebooks
    • graviton/blackbox.py:
      • pass mypy
      • allow specifying transaction params into dry-runs
    • graviton/dryrun.py:
      • pass mypy
    • graviton/deprecated_dry_run.py: new module that contains functionality mostly used by the now deprecated DryRunTestCaseMixin
    • graviton/deprecated_dryrun_mixin.py: where the now deprecated DryRunTestCaseMixin is defined
    • graviton/dryrun.py:
      • refactor to keep only the most useful portions of the original helper
      • make mypy pass
      • allow specifying transaction parameters
      • pprint() now returns a string, in addition to printing
    • graviton/invariant.py: make mypy pass
    • graviton/models.py: new module that contains lightweight models such as the App and LSig dataclasses
    • mypy.ini: needed by mypy
    • notebooks: new directory for Jupyter notebooks. It contains:
      • IMAGES.md: a static file that shows examples of 3D graphs of dry-runs
      • notebooks/notebooks_test.ipynb: explains how to test notebooks with pytest
      • notebooks/quadratic_factoring_game.ipynb: Blackbox demo
    • setup.py: new Jupyter notebooks requirements, and declaration for receiving projects that this package is typed
    • tests/integration/algod_test.py: separate out the test that algod is alive and well into a seperate integration test, for easier debugging
    • tests/integration/algod_test.py: small refactoring, mostly for mypy
    • tests/integration/dryrun_mixin_docs_test.py: refactoring mostly due to deprecations
    • tests/integration/lsig_test.py: New logic sig only test. THIS NEEDS A CLEANUP.

    adding pytest-xdist for faster integration testing.

    Comparison on github:

    • Before (58.19 secs for python 3.10)
    • After (37.64 secs for python 3.10)

    Local test comparison:

    Runniing with a single thread:

    ❯ make integration-test NUM_PROCS=1
    
     ... 
    
    ================================================================== slowest 10 durations ===================================================================
    16.47s call     tests/integration/blackbox_test.py::test_app_with_report[app_slow_fibonacci]
    8.85s call     tests/integration/blackbox_test.py::test_logicsig_with_report[lsig_slow_fibonacci]
    5.03s call     tests/integration/blackbox_test.py::test_logicsig_with_report[lsig_string_mult]
    4.83s call     tests/integration/blackbox_test.py::test_app_with_report[app_string_mult]
    4.70s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V4]
    4.25s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V3]
    3.90s call     tests/integration/lsig_test.py::test_factorizer_report_with_pymnt
    3.56s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V2]
    2.43s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V1]
    1.49s call     tests/integration/dryrun_mixin_docs_test.py::ExampleTestCase::test_factorial
    ========= 1737 passed in 82.38s (0:01:22) ========= 
    

    With

    ❯ make integration-test
    
    ...
    
    ================================================================== slowest 10 durations ===================================================================
    38.58s call     tests/integration/blackbox_test.py::test_app_with_report[app_slow_fibonacci]
    25.53s call     tests/integration/blackbox_test.py::test_logicsig_with_report[lsig_slow_fibonacci]
    19.45s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V4]
    18.16s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V3]
    18.12s call     tests/integration/blackbox_test.py::test_app_with_report[app_string_mult]
    16.77s call     tests/integration/blackbox_test.py::test_logicsig_with_report[lsig_string_mult]
    6.77s call     tests/integration/dryrun_mixin_docs_test.py::ExampleTestCase::test_factorial
    5.49s call     tests/integration/lsig_test.py::test_factorizer_report_with_pymnt
    4.59s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V1]
    3.27s call     tests/integration/lsig_test.py::test_factorizer_game_version_report[V2]
    ========= 1737 passed in 44.31s =========
    
    opened by tzaffi 1
  • Enable Running Blackbox Testing using the Offline Version of Dryrun

    Enable Running Blackbox Testing using the Offline Version of Dryrun

    The goal clerk dryrun command (in opposition to the goal clerk dryrun-remote) is in theory capable of running dry runs without an actual node running. If we use this functionality, we could potentially save on most of the startup times of the C.I. in this repo (and pyteal as well). In theory, this would work as follows:

    1. add offline option to executions: e.g. DryRunExecutor.execute_one_dryrun(offline=True, ...)
    2. this delegates to an os-level process goal clerk dryrun ...
    3. the response should come back as a JSON
    4. the response's transactions are then consumed as usual by blackbox.DryRunInspctor
    5. inspections and assertions proceed as in the current approach
    enhancement Team Scytale 
    opened by tzaffi 1
  • Refactor `DryRunExecutor`

    Refactor `DryRunExecutor`

    TODO: break up the PR so the following is no longer a problem

    The diff in graviton_blackbox.py is difficult to read through. Instead of looking at the diff, I encourage looking at the actual code. Additionally, this is a testing library, and therefore (IMO) we can gain most of the confidence by looking at the resulting tests both here and in the companion pyteal PR.

    Former PR

    #44

    Issues Addressed

    • #38
    • #40

    Summary of changes

    • graviton/blackbox.py - this one's hard to grok because I reordered the classes. In addition:
      • Introducing class DryRunTransactionParams for better grouping of some variables
      • Trimming stale comments
      • class DryRunExecutor:
        • Removed all the static dryrun_* methods and consolidated functionality as follows:
        • It is now expected that the user will instantiate a DryRunExecutor object and call run() on it. Convenience methods run_one() and run_sequence() are also provided, and these have better type guarantees.
    • *_test.py and quadratic_factoring_game.ipynb - Migrating all the tests to use run_one() and run_sequence() methods (except for the usage of AbiContractExecutor.dry_run_on_sequence() which remains unaffected)

    TODO's

    • [ ] Address @michaeldiamant comments in #42 concerning an untested pathway and a suggested patch.
    opened by tzaffi 0
  • Refactor `DryRunExecutor`

    Refactor `DryRunExecutor`

    Problems Summary

    Too many executing methods

    See below for a list of DryRunExecutor methods that allow executing dryruns. It is cumbersome and confusing to have so many methods that basically do the same thing. Ideally, it would be nice to have a single method with the following API:

    class DryRunExecutor:
        @singledispatch
        @classmethod
        def execute(
                cls: self,
                algod: AlgodClient,
                program: str,
                input: Any,
                *, 
                mode: ExecutionMode = ExecutionMode.Application,
                abi_method_signature: Optional[str] = None,
                ... several more params such as sender, sp, is_app_create, accounts ...
            ):
                raise NotImplementedError("Implement execute method")
    

    This makes use of functools singledispatch decorator

    Inconsistent abi-type handling

    Currently, graviton's dry run execution are inconsistent in how abi-information is handled. Some allow abi_argument_types and abi_return_types to be provided while some also allow abi_method_signature to be provided. The last parameter includes all the information that abi_argument_types and abi_return_types provides and therefore it is confusing to provide all the parameters.

    After an investigation into the usage of dry run execution in PyTeal, it became apparent that in all relevant situations, an ABIReturnSubroutine object is available for inspection, and it comes with a method method_signature() which could be used to populate an abi_method_signature parameter for dry run execution.

    Action Items

    Streamline the dry run execution API by refactoring the dry run executing methods as follows:

    • [x] remove parameter abi_argument_types
    • [x] remove parameter abi_return_type
    • [x] add parameter abi_method_signature
    • [x] ~make all the current dry run executing methods private~ these have been deleted
    • [x] ~unify into a single execute() function using @singledispatch and @process.register to dispatch via input's type (Further investigation is required here. It may not be possible given the nesting of possible inputs (list[tuple] ... etc .... We may also prefer a multipledispatch approach taking into account the mode parameter's type. It may also be infeasible to dispatch directly and therefore we might need to match directly and delegate.)~ This didn't totally work out. However, we've unified everything into a run() method, with 2 companion convenience methods run_one() and run_sequence()
    • [x] prepare a PyTeal PR which adapts to this new API (https://github.com/algorand/pyteal/pull/628)
    • [ ] refactor supress_abi (not done)

    List of dry run executing methods for refactoring

    • [x] DryRunExecutor.execute_one_dryrun()
    • [x] DryRunExecutor.dryrun_logicsig()
    • [x] DryRunExecutor.dryrun_app()
    • [x] DryRunExecutor.dryrun_logicsig_on_sequence()
    • [x] DryRunExecutor.dryrun_multiapps_on_sequence()
    • [x] DryRunExecutor.dryrun_app_pair_on_sequence()
    • [x] ABIContractExecutor.dryrun_app_on_sequence()
    Team Scytale 
    opened by tzaffi 0
  • Add updated budget info to `report()`

    Add updated budget info to `report()`

    Summary

    Since #33 we have better visibility into program budget via budget_added and budget_consumed. However, these weren't added to the report() function. E.g., part of a recent report looked like had a TXN AS ROW missing this info:

        TXN AS ROW: {' Run': 0, ' cost': -2009, ' last_log': '`0000000000011950', ' final_message': 'PASS', ' Status': 'PASS', 'steps': 89, ' top_of_stack': 72016, 'max_stack_height': 3, '[email protected]': 72016, '[email protected]': 3}
    

    Action Item

    • [x] Bring budget_added and budget_consumed into csv_row()
    opened by tzaffi 0
  • Releases: Source distribution bundles extraneous artifacts

    Releases: Source distribution bundles extraneous artifacts

    Like https://github.com/algorand/pyteal/issues/610 and https://github.com/algorand/py-algorand-sdk/issues/408, graviton bundles extra artifacts into its source distribution (e.g. tests). The story's request is to limit the source distribution to graviton.

    Team Scytale Infrastructure 
    opened by michaeldiamant 0
  • Tech Debt: Refactor `DryRunInspector.dig` and `DryRunInspector.extract*` methods

    Tech Debt: Refactor `DryRunInspector.dig` and `DryRunInspector.extract*` methods

    There are a bunch of violations of D.R.Y. in these methods. This deserves a re-evaluation with a bias towards removing the extract* methods if possible.

    Team Scytale 
    opened by tzaffi 0
Releases(v0.7.0)
  • v0.7.0(Jan 3, 2023)

    What's Changed

    • Add ability to assert identical functionality for teal programs/methods by @tzaffi in https://github.com/algorand/graviton/pull/36
    • Bugfix: error message changed due to boxes merge by @tzaffi in https://github.com/algorand/graviton/pull/41
    • Tech Debt PR Including Release Version Bump by @tzaffi in https://github.com/algorand/graviton/pull/42

    Full Changelog: https://github.com/algorand/graviton/compare/v0.5.0...v0.7.0

    Source code(tar.gz)
    Source code(zip)
  • v0.6.0(Dec 14, 2022)

    What's Changed

    • Add ability to assert identical functionality for teal programs/methods by @tzaffi in https://github.com/algorand/graviton/pull/36
    • Bugfix: error message changed due to boxes merge by @tzaffi in https://github.com/algorand/graviton/pull/41

    Full Changelog: https://github.com/algorand/graviton/compare/v0.5.0...v0.6.0

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Nov 8, 2022)

    What's Changed

    • Adding graviton logo and badges by @aorumbayev in https://github.com/algorand/graviton/pull/27
    • Dryrun cost by @tzaffi in https://github.com/algorand/graviton/pull/33
    • Pre v0.5.0 Tweaks by @tzaffi in https://github.com/algorand/graviton/pull/34
    • sort the changelog by @tzaffi in https://github.com/algorand/graviton/pull/35

    New Contributors

    • @aorumbayev made their first contribution in https://github.com/algorand/graviton/pull/27

    Full Changelog: https://github.com/algorand/graviton/compare/v0.4.0...v0.5.0

    Source code(tar.gz)
    Source code(zip)
Owner
Algorand
Algorand is a scalable, secure and decentralized digital currency and transactions platform.
Algorand
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022