Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Related tags

Deep LearningUVC
Overview

Joint-task Self-supervised Learning for Temporal Correspondence

Project | Paper

Overview

Joint-task Self-supervised Learning for Temporal Correspondence

Xueting Li*, Sifei Liu*, Shalini De Mello, Xiaolong Wang, Jan Kautz, Ming-Hsuan Yang.

(* equal contributions)

In Neural Information Processing Systems (NeurIPS), 2019.

Citation

If you use our code in your research, please use the following BibTex:

@inproceedings{uvc_2019,
    Author = {Xueting Li and Sifei Liu and Shalini De Mello and Xiaolong Wang and Jan Kautz and Ming-Hsuan Yang},
    Title = {Joint-task Self-supervised Learning for Temporal Correspondence},
    Booktitle = {NeurIPS},
    Year = {2019},
}

Instance segmentation propagation on DAVIS2017

Method J_mean J_recall J_decay F_mean F_recall F_decay
Ours 0.563 0.650 0.289 0.592 0.641 0.354
Ours - track 0.577 0.683 0.263 0.613 0.698 0.324

Prerequisites

The code is tested in the following environment:

  • Ubuntu 16.04
  • Pytorch 1.1.0, tqdm, scipy 1.2.1

Testing on DAVIS2017

Testing without tracking

To test on DAVIS2017 for instance segmentation mask propagation, please run:

python test.py -d /workspace/DAVIS/ -s 480

Important parameters:

  • -c: checkpoint path.
  • -o: results path.
  • -d: DAVIS 2017 dataset path.
  • -s: test resolution, all results in the paper are tested on 480p images, i.e. -s 480.

Please check the test.py file for other parameters.

Testing with tracking

To test on DAVIS2017 by tracking & propagation, please run:

python test_with_track.py -d /workspace/DAVIS/ -s 480

Similar parameters as test.py, please see the test_with_track.py for details.

Testing on the VIP dataset

To test on VIP, please run the following command with your own VIP path:

python test_mask_vip.py -o results/VIP/category/ --scale_size 560 560 --pre_num 1 -d /DATA/VIP/VIP_Fine/Images/ --val_txt /DATA/VIP/VIP_Fine/lists/val_videos.txt -c weights/checkpoint_latest.pth.tar

and then:

python eval_vip.py -g DATA/VIP/VIP_Fine/Annotations/Category_ids/ -p results/VIP/category/

Testing on the JHMDB dataset

Please check out this branch. The code is borrowed from TimeCycle.

Training on Kinetics

Dataset

We use the kinetics dataset for training.

Training command

python track_match_v1.py --wepoch 10 --nepoch 30 -c match_track_switch --batchsize 40 --coord_switch 0 --lc 0.3

Acknowledgements

Owner
Sifei Liu
Sifei Liu
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022