Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Related tags

Deep LearningGNAS-MP
Overview

Rethinking Graph Neural Architecture Search from Message-passing

Intro

The GNAS can automatically learn better architecture with the optimal depth of message passing on the graph. Specifically, we design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations (feature filtering & neighbor aggregation) from message-passing mechanism to construct powerful graph network search space. Feature filtering performs adaptive feature selection, and neighbor aggregation captures structural information and calculates neighbors’ statistics. Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.

Getting Started

0. Prerequisites

  • Linux
  • NVIDIA GPU + CUDA CuDNN

1. Setup Python environment for GPU

# clone Github repo
conda install git
git clone https://github.com/phython96/GNAS-MP.git
cd GNAS-MP

# Install python environment
conda env create -f environment_gpu.yml
conda activate gnas

2. Download datasets

The datasets are provided by project benchmarking-gnns, you can click here to download all the required datasets.

3. Searching

We have provided scripts for easily searching graph neural networks on five datasets.

# searching on ZINC dataset at graph regression task
sh scripts/search_molecules_zinc.sh [gpu_id]

# searching on SBMs_PATTERN dataset at node classification task
sh scripts/search_sbms_pattern.sh [gpu_id]

# searching on SBMs_CLUSTER dataset at node classification task
sh scripts/search_sbms_cluster.sh [gpu_id]

# searching on MNIST dataset at graph classification task
sh scripts/search_superpixels_mnist.sh [gpu_id]

# searching on CIFAR10 dataset at graph classification task
sh scripts/search_superpixels_cifar10.sh [gpu_id]

When the search procedure is finished, you need to copy the searched genotypes from file "./save/[data_name]_search.txt" to "./configs/genotypes.py".

For example, we have searched on MNIST dataset, and obtain genotypes result file "./save/MNIST_search.txt".

Epoch : 19
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_dense', 9, 7)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 0), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_identity', 9, 4)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 1), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_identity', 8, 7), ('f_sparse', 9, 4)], concat_node=None)]
Epoch : 20
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_dense', 8, 4), ('f_sparse', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_sparse', 9, 8)], concat_node=None)]
Epoch : 21
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 0), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_identity', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 4), ('f_identity', 9, 7)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_identity', 9, 4)], concat_node=None)]

Copy the fourth line from the above file and paste it into "./configs/genotypes.py" with the prefix "MNIST = ".

MNIST_Net = [Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_dense', 8, 4), ('f_sparse', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_sparse', 9, 8)], concat_node=None)]

4. Training

Before training, you must confim that there is a genotype of searched graph neural network in file "./configs/genotypes.py".

We provided scripts for easily training graph neural networks searched by GNAS.

# training on ZINC dataset at graph regression task
sh scripts/train_molecules_zinc.sh [gpu_id]

# training on SBMs_PATTERN dataset at node classification task
sh scripts/train_sbms_pattern.sh [gpu_id]

# training on SBMs_CLUSTER dataset at node classification task
sh scripts/train_sbms_cluster.sh [gpu_id]

# training on MNIST dataset at graph classification task
sh scripts/train_superpixels_mnist.sh [gpu_id]

# training on CIFAR10 dataset at graph classification task
sh scripts/train_superpixels_cifar10.sh [gpu_id]

Results

Visualization

Here, we show 4-layer graph neural networks searched by GNAS on five datasets at three graph tasks.

Reference

to be updated

Owner
Shaofei Cai
Retired ICPC contestant, classic algorithm enthusiast.
Shaofei Cai
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021