Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Related tags

Deep LearningGNAS-MP
Overview

Rethinking Graph Neural Architecture Search from Message-passing

Intro

The GNAS can automatically learn better architecture with the optimal depth of message passing on the graph. Specifically, we design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations (feature filtering & neighbor aggregation) from message-passing mechanism to construct powerful graph network search space. Feature filtering performs adaptive feature selection, and neighbor aggregation captures structural information and calculates neighbors’ statistics. Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.

Getting Started

0. Prerequisites

  • Linux
  • NVIDIA GPU + CUDA CuDNN

1. Setup Python environment for GPU

# clone Github repo
conda install git
git clone https://github.com/phython96/GNAS-MP.git
cd GNAS-MP

# Install python environment
conda env create -f environment_gpu.yml
conda activate gnas

2. Download datasets

The datasets are provided by project benchmarking-gnns, you can click here to download all the required datasets.

3. Searching

We have provided scripts for easily searching graph neural networks on five datasets.

# searching on ZINC dataset at graph regression task
sh scripts/search_molecules_zinc.sh [gpu_id]

# searching on SBMs_PATTERN dataset at node classification task
sh scripts/search_sbms_pattern.sh [gpu_id]

# searching on SBMs_CLUSTER dataset at node classification task
sh scripts/search_sbms_cluster.sh [gpu_id]

# searching on MNIST dataset at graph classification task
sh scripts/search_superpixels_mnist.sh [gpu_id]

# searching on CIFAR10 dataset at graph classification task
sh scripts/search_superpixels_cifar10.sh [gpu_id]

When the search procedure is finished, you need to copy the searched genotypes from file "./save/[data_name]_search.txt" to "./configs/genotypes.py".

For example, we have searched on MNIST dataset, and obtain genotypes result file "./save/MNIST_search.txt".

Epoch : 19
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_dense', 9, 7)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 0), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_identity', 9, 4)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 1), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_identity', 8, 7), ('f_sparse', 9, 4)], concat_node=None)]
Epoch : 20
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_dense', 8, 4), ('f_sparse', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_sparse', 9, 8)], concat_node=None)]
Epoch : 21
[Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 0), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_identity', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 4), ('f_identity', 9, 7)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_identity', 9, 4)], concat_node=None)]

Copy the fourth line from the above file and paste it into "./configs/genotypes.py" with the prefix "MNIST = ".

MNIST_Net = [Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_dense', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 6), ('f_identity', 8, 7), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_dense', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_identity', 7, 5), ('f_identity', 8, 6), ('f_sparse', 9, 8)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 0), ('f_sparse', 3, 0), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_dense', 8, 4), ('f_sparse', 9, 6)], concat_node=None), Genotype(alpha_cell=[('f_sparse', 1, 0), ('f_sparse', 2, 1), ('f_sparse', 3, 2), ('a_max', 4, 1), ('a_max', 5, 2), ('a_max', 6, 3), ('f_sparse', 7, 4), ('f_sparse', 8, 6), ('f_sparse', 9, 8)], concat_node=None)]

4. Training

Before training, you must confim that there is a genotype of searched graph neural network in file "./configs/genotypes.py".

We provided scripts for easily training graph neural networks searched by GNAS.

# training on ZINC dataset at graph regression task
sh scripts/train_molecules_zinc.sh [gpu_id]

# training on SBMs_PATTERN dataset at node classification task
sh scripts/train_sbms_pattern.sh [gpu_id]

# training on SBMs_CLUSTER dataset at node classification task
sh scripts/train_sbms_cluster.sh [gpu_id]

# training on MNIST dataset at graph classification task
sh scripts/train_superpixels_mnist.sh [gpu_id]

# training on CIFAR10 dataset at graph classification task
sh scripts/train_superpixels_cifar10.sh [gpu_id]

Results

Visualization

Here, we show 4-layer graph neural networks searched by GNAS on five datasets at three graph tasks.

Reference

to be updated

Owner
Shaofei Cai
Retired ICPC contestant, classic algorithm enthusiast.
Shaofei Cai
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023