[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Overview

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF]

Language grade: Python MIT licensed

Wuyang Chen, Xinyu Gong, Zhangyang Wang

In ICLR 2021.

Overview

We present TE-NAS, the first published training-free neural architecture search method with extremely fast search speed (no gradient descent at all!) and high-quality performance.

Highlights:

  • Trainig-free and label-free NAS: we achieved extreme fast neural architecture search without a single gradient descent.
  • Bridging the theory-application gap: We identified two training-free indicators to rank the quality of deep networks: the condition number of their NTKs, and the number of linear regions in their input space.
  • SOTA: TE-NAS achieved extremely fast search speed (one 1080Ti, 20 minutes on NAS-Bench-201 space / four hours on DARTS space on ImageNet) and maintains competitive accuracy.

Prerequisites

  • Ubuntu 16.04
  • Python 3.6.9
  • CUDA 10.1 (lower versions may work but were not tested)
  • NVIDIA GPU + CuDNN v7.3

This repository has been tested on GTX 1080Ti. Configurations may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/chenwydj/TENAS.git
cd TENAS
  • Install dependencies:
pip install -r requirements.txt

Usage

0. Prepare the dataset

  • Please follow the guideline here to prepare the CIFAR-10/100 and ImageNet dataset, and also the NAS-Bench-201 database.
  • Remember to properly set the TORCH_HOME and data_paths in the prune_launch.py.

1. Search

NAS-Bench-201 Space

python prune_launch.py --space nas-bench-201 --dataset cifar10 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset cifar100 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset ImageNet16-120 --gpu 0

DARTS Space (NASNET)

python prune_launch.py --space darts --dataset cifar10 --gpu 0
python prune_launch.py --space darts --dataset imagenet-1k --gpu 0

2. Evaluation

  • For architectures searched on nas-bench-201, the accuracies are immediately available at the end of search (from the console output).
  • For architectures searched on darts, please use DARTS_evaluation for training the searched architecture from scratch and evaluation.

Citation

@inproceedings{chen2020tenas,
  title={Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective},
  author={Chen, Wuyang and Gong, Xinyu and Wang, Zhangyang},
  booktitle={International Conference on Learning Representations},
  year={2021}
}

Acknowledgement

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021