Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Related tags

Deep LearningTGAN-SR
Overview

Generating Symbolic Reasoning Problems with Transformer GANs

This is the implementation of the paper Generating Symbolic Reasoning Problems with Transformer GANs.

Constructing training data for symbolic reasoning domains is challenging: On the one hand existing instances are typically hand-crafted and too few to be trained on directly, on the other hand synthetically generated instances are often hard to evaluate in terms of their meaningfulness.

We provide a GAN and a Wasserstein GAN equipped with Transformer encoders to generate sensible and challenging training data for symbolic reasoning domains. Even without autoregression, the GAN models produce syntactically correct problem instances. The generated data can be used as a substitute for real training data, and, especially, the training data can be generated from a real data set that is too small to be trained on directly.

For example, the models produced the following correct mathematical expressions:

and the following correct Linear-time Temporal Logic (LTL) formulas used in verification:

Installation

The code is shipped as a Python package that can be installed by executing

pip install -e .

in the impl directory (where setup.py is located). Python version 3.6 or higher is required. Additional dependencies such as tensorflow will be installed automatically. To generate datasets or solve instances immediately after generation, the LTL satisfiability checking tool aalta is required as binary. It can be obtained from bitbucket (earliest commit in that repository). After compiling, ensure that the binary aalta resides under the bin folder.

Datasets

A zip file containing our original datasets can be downloaded from here. Unpack its contents to the datasets directory.

Dataset generation

Alternatively, datasets can be generated from scratch. The following procedure describes how to construct a dataset similar to the main base dataset (LTLbase):

First, generate a raw dataset by

python -m tgan_sr.data_generation.generator -od datasets/LTLbase --splits all_raw:1 --timeout 2 -nv 10 -ne 1600000 -ts 50 --log-each-x-percent 1 --frac-unsat None

(possibly rename to not override the supplied dataset). Enter the newly created directory.

Optional: Visualize the dataset (like Figures 5 and 6 in the paper)

python -m tgan_sr.utils.analyze_dataset all_raw.txt formula,sat

To filter the dataset for duplicates and balance classes per size

python -m tgan_sr.utils.update_dataset all_raw.txt unique - | python -m tgan_sr.utils.update_dataset - balance_per_size all_balanced.txt

Optional: Calculate relaxed satisfiability

python -m tgan_sr.utils.update_dataset all_balanced.txt relaxed_sat all_balanced_rs.txt

Optional: Visualize the dataset (like Figures 7 and 8 in the paper)

python -m tgan_sr.utils.analyze_dataset all_balanced_rs.txt formula,sat+relaxed

Split the data into training and validation sets

python -m tgan_sr.utils.update_dataset all_balanced_rs.txt shuffle+split=train:8,val:1,test:1

Experiments (training)

The folder configs contains JSON files for each type of experiment in the paper. Settings for different hyperparameters can be easily adjusted.

A model can be trained like this:

python -m tgan_sr.train.gan --run-name NAME --params-file configs/CONFIG.json

During training, relevant metrics will be logged to train_custom in the run's directory and can be viewed with tensorboard afterwards.

A list of all configurations and corresponding JSON files:

  • Standard WGAN: wgan_gp10_nl6-4_nc2_bs1024.json
  • Standard GAN: gan_nl6-4_nc2_bs1024.json
  • different σ for added noise: add parameter "gan_sigma_real" and assign desired value
  • WGAN on 10K-sized base dataset: n10k_wgan_gp10_nl6-4_nc2_bs512.json
  • Sample data from the trained WGAN: sample_n10k_wgan_gp10_nl6-4_nc2_bs512.json (ensure the "load_from" field matches your trained run name)
  • Classifier on default dataset: class_nl4_bs1024.json
  • Classifier on generated dataset: class_Generated_nl4_bs1024.json
  • WGAN with included classifier: wgan+class_nl6-3s1_nc2_bs1024.json
  • WGAN with absolute uncertainty objective: wgan+class+uncert-abs_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • WGAN with entropy uncertainty objective: wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • Sample data from the trained WGAN with entropy uncertainty objective: sample_wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "load_from" field matches your trained run name)

Evaluation

To test a trained classifier on an arbitrary dataset (validation):

python -m tgan_sr.train.gan --run-name NAME --test --ds-name DATASET_NAME

The model will be automatically loaded from the latest checkpoint in the run's directory.

How to Cite

@article{TGAN-SR,
    title = {Generating Symbolic Reasoning Problems with Transformer GANs},
    author = {Kreber, Jens U and Hahn, Christopher},
    journal = {arXiv preprint},
    year = {2021}
}
Owner
Reactive Systems Group
Saarland University
Reactive Systems Group
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022