Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Overview

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations

This repo contains the Pytorch implementation of our paper:

Revisiting Contrastive Methods for UnsupervisedLearning of Visual Representations

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis and Luc Van Gool.

Contents

  1. Introduction
  2. Key Results
  3. Installation
  4. Training
  5. Evaluation
  6. Model Zoo
  7. Citation

Introduction

Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection. However, current methods are still primarily applied to curated datasets like ImageNet. We first study how biases in the dataset affect existing methods. Our results show that an approach like MoCo works surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets. Second, given the generality of the approach, we try to realize further gains. We show that learning additional invariances - through the use of multi-scale cropping, stronger augmentations and nearest neighbors - improves the representations. Finally, we observe that MoCo learns spatially structured representations when trained with a multi-crop strategy. The representations can be used for semantic segment retrieval and video instance segmentation without finetuning. Moreover, the results are on par with specialized models. We hope this work will serve as a useful study for other researchers.

Key Results

  • Scene-centric Data: We do not observe any indications that contrastive pretraining suffers from using scene-centric image data. This is in contrast to prior belief. Moreover, if the downstream data is non-object-centric, pretraining on scene-centric datasets even outperforms ImageNet pretraining.
  • Dense Representations: The multi-scale cropping strategy allows the model to learn spatially structured representations. This questions a recent trend that proposed additional losses at a denser level in the image. The representations can be used for semantic segment retrieval and video instance segmentation without any finetuning.
  • Additional Invariances: We impose additional invariances by exploring different data augmentations and nearest neighbors to boost the performance.
  • Transfer Performance: We observed that if a model obtains improvements for the downstream classification tasks, the same improvements are not guarenteed for other tasks (e.g. semantic segmentation) and vice versa.

Installation

The Python code runs with recent Pytorch versions, e.g. 1.6. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge opencv           # For evaluation
conda install matplotlib scipy scikit-learn   # For evaluation

We refer to the environment.yml file for an overview of the packages we used to reproduce our results. The code was run on 2 Tesla V100 GPUs.

Training

Now, we will pretrain on the COCO dataset. You can download the dataset from the official website. Several scripts in the scripts/ directory are provided. It contains the vanilla MoCo setup and our additional modifications for both 200 epochs and 800 epochs of training. First, modify --output_dir and the dataset location in each script before executing them. Then, run the following command to start the training for 200 epochs:

sh scripts/ours_coco_200ep.sh # Train our model for 200 epochs.

The training currently supports:

  • MoCo
  • + Multi-scale constrained cropping
  • + AutoAugment
  • + kNN-loss

A detailed version of the pseudocode can be found in Appendix B.

Evaluation

We perform the evaluation for the following downstream tasks: linear classification (VOC), semantic segmentation (VOC and Cityscapes), semantic segment retrieval and video instance segmentation (DAVIS). More details and results can be found in the main paper and the appendix.

Linear Classifier

The representations can be evaluated under the linear evaluation protocol on PASCAL VOC. Please visit the ./evaluation/voc_svm directory for more information.

Semantic Segmentation

We provide code to evaluate the representations for the semantic segmentation task on the PASCAL VOC and Cityscapes datasets. Please visit the ./evaluation/segmentation directory for more information.

Segment Retrieval

In order to obtain the results from the paper, run the publicly available code with our weights as the initialization of the model. You only need to adapt the amount of clusters, e.g. 5.

Video Instance Segmentation

In order to obtain the results from the paper, run the publicly available code from Jabri et al. with our weights as the initialization of the model.

Model Zoo

Several pretrained models can be downloaded here. For a fair comparison, which takes the training duration into account, we refer to Figure 5 in the paper. More results can be found in Table 4 and Table 9.

Method Epochs VOC SVM VOC mIoU Cityscapes mIoU DAVIS J&F Download link
MoCo 200 76.1 66.2 70.3 - Model 🔗
Ours 200 85.1 71.9 72.2 - Model 🔗
MoCo 800 81.0 71.1 71.3 63.2 Model 🔗
Ours 800 85.9 73.5 72.3 66.2 Model 🔗

Citation

This code is based on the MoCo repository. If you find this repository useful for your research, please consider citing the following paper(s):

@article{vangansbeke2021revisiting,
  title={Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Van Gool, Luc},
  journal={arxiv preprint arxiv:2106.05967},
  year={2021}
}
@inproceedings{he2019moco,
  title={Momentum Contrast for Unsupervised Visual Representation Learning},
  author={Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

For any enquiries, please contact the main authors.

Extra

  • For an overview on self-supervised learning (SSL), have a look at the overview repository.
  • Interested in self-supervised semantic segmentation? Check out our recent work: MaskContrast.
  • Interested in self-supervised classification? Check out SCAN.
  • Other great SSL repositories: MoCo, SupContrast, SeLa, SwAV and many more here.

License

This software is released under a creative commons license which allows for personal and research use only. You can view a license summary here. Part of the code was based on MoCo. Check it out for more details.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
22 Oct 14, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022